
Foundation XML and E4X
for Flash and Flex

Sas Jacobs

Lead Editor
Ben Renow-Clarke

Technical Reviewer
Kevin Ruse

Editorial Board
Clay Andres, Steve Anglin, Mark Beckner, Ewan Buckingham,

Tony Campbell, Gary Cornell, Jonathan Gennick,
Michelle Lowman, Matthew Moodie, Jeffrey Pepper,

Frank Pohlmann, Ben Renow-Clarke, Dominic Shakeshaft,
Matt Wade, Tom Welsh

Project Manager
Beth Christmas

Copy Editor
Marilyn Smith

Associate Production Director
Kari Brooks-Copony

Production Editor
Ellie Fountain

Compositor
Patrick Cunningham

Proofreader
Lisa Hamilton

Indexer
Broccoli Information Management

Artist
April Milne

Cover Image Designer
Corné van Dooren

Interior and Cover Designer
Kurt Krames

Manufacturing Director
Tom Debolski

Foundation XML and E4X for Flash and Flex
Copyright © 2009 by Sas Jacobs

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means, electronic or mechanical,
including photocopying, recording, or by any information storage or retrieval system, without the prior written permission of the

copyright owner and the publisher.

ISBN-13 (pbk): 978-1-4302-1634-6

ISBN-13 (electronic): 978-1-4302-1635-3

Printed and bound in the United States of America 9 8 7 6 5 4 3 2 1

Trademarked names may appear in this book. Rather than use a trademark symbol with every occurrence of a trademarked name,
we use the names only in an editorial fashion and to the benefit of the trademark owner, with no intention of infringement of

the trademark.

Distributed to the book trade worldwide by Springer-Verlag New York, Inc., 233 Spring Street, 6th Floor, New York, NY 10013.
Phone 1-800-SPRINGER, fax 201-348-4505, e-mail , or visit .

For information on translations, please contact Apress directly at 2855 Telegraph Avenue, Suite 600, Berkeley, CA 94705.
Phone 510-549-5930, fax 510-549-5939, e-mail , or visit .

Apress and friends of ED books may be purchased in bulk for academic, corporate, or promotional use. eBook versions and licenses
are also available for most titles. For more information, reference our Special Bulk Sales–eBook Licensing web page at

.

The information in this book is distributed on an “as is” basis, without warranty. Although every precaution has been taken in the
preparation of this work, neither the author(s) nor Apress shall have any liability to any person or entity with respect to any loss or

damage caused or alleged to be caused directly or indirectly by the information contained in this work.

The source code for this book is freely available to readers at in the Downloads section.

Credits

I’d like to dedicate this book to my Grandma Lucy, who died
while I was writing it. You are a beautiful person, and I miss

you very much.

v

CONTENTS AT A GLANCE

About the Author . xvii

About the Technical Reviewer .xix

About the Cover Image Designer .xxi

Acknowledgments . xxiii

Introduction . xxv

Chapter 1 INTRODUCTION TO XML .1

Chapter 2 GENERATING XML CONTENT . 33

Chapter 3 ACTIONSCRIPT 3.0 AND XML . 65

Chapter 4 USING E4X EXPRESSIONS . 97

Chapter 5 USING THE URLLOADER CLASS WITH
XML DOCUMENTS . 135

Chapter 6 LOADING METHODS SPECIFIC TO FLEX 169

Chapter 7 LOADING METHODS SPECIFIC TO FLASH 203

Chapter 8 MODIFYING XML CONTENT WITH ACTIONSCRIPT 3.0 . . . 233

Chapter 9 COMMUNICATING WITH THE SERVER . 279

Chapter 10 CONSUMING WEB SERVICES WITH FLEX 329

Chapter 11 CONSUMING WEB SERVICES WITH FLASH 373

Chapter 12 FLASH CASE STUDY . 407

Chapter 13 FLEX CASE STUDY . 439

Index . 480

vii

CONTENTS

About the Author . xvii

About the Technical Reviewer .xix

About the Cover Image Designer .xxi

Acknowledgments . xxiii

Introduction . xxv

Chapter 1 INTRODUCTION TO XML .1

What is XML? . 1
Understanding XML . 2
Storing information in XML documents . 2
XML, in the beginning . 3
An XML example . 4

Why XML? . 5
Simple . 5
Flexible . 5
Descriptive . 6
Accessible . 6
Independent . 6
Precise . 7
Free . 7

Why is XML important in Flash and Flex? . 7
XML as a SWF data source . 7
MXML in Flex . 8
ActionScript 3.0 and XML . 8

XML document sections . 9
Document prolog . 9

XML declaration . 9
Processing instructions . 10
Document Type Definitions . 10

Document tree . 11
Whitespace . 11
Namespaces . 11

CONTENTS

viii

Structuring XML documents . 12
Elements . 13

Writing elements . 13
Naming elements . 14
Populating elements . 14
The first element . 15

Attributes . 15
Writing attributes . 15
Naming attributes . 16
Structuring attributes as elements . 16

Text . 16
Entities . 17
Comments . 17
CDATA . 18

A simple XML document . 18
Understanding well-formed documents . 20

Element structure . 21
Element nesting . 21
Element closing . 21
Element opening and closing tags . 22
Quotes for attributes . 22
Documents that aren’t well-formed . 23

XML, HTML, and XHTML . 24
Understanding HTML . 24
How is XML different from HTML? . 24
Where does XHTML fit in? . 25

Understanding related recommendations . 27
Understanding DTDs and XML schemas . 27
Understanding XSL . 29

Summary . 30

Chapter 2 GENERATING XML CONTENT . 33

Authoring XML documents in a text editor . 34
Using text and HTML editors . 34
Using XML editors . 35

Using Stylus Studio 2008 XML . 35
Working with Dreamweaver . 41

Generating XML content from a database . 43
Using a web server to generate XML content . 43
Working with VB .NET . 44
Working with PHP . 47
Working with ColdFusion . 49

Generating XML from other software packages . 50
Getting started with XML in Excel 2007 and Word 2007 . 50
Generating XML from Word 2007 . 51

Creating an XML document in Word using Save As . 51
Creating XML content in Word by using a schema . 53

CONTENTS

ix

Generating XML from Excel 2007 . 56
Generating an XML document in Excel using Save As . 56
Creating XML content in Excel using a schema . 57

Creating XML content with Access 2007 . 59
Validation and XML content in SWF applications . 61
Summary . 62

Chapter 3 ACTIONSCRIPT 3.0 AND XML . 65

Differences between ActionScript 2.0 and 3.0 . 66
XML as an ActionScript data type . 67

Writing XML inline within ActionScript . 67
Writing XML with the XML tag in Flex . 68

Overview of the new ActionScript 3.0 classes . 68
The ActionScript 3.0 class . 68
The XMLList class . 69
The XMLListCollection class . 69
The QName and Namespace classes . 69

Working with the XML class . 69
Properties of the XML class . 70

Working with XML properties in Flash . 71
Working with XML properties in Flex . 72

Methods of the XML class . 73
Locating XML content . 73

Instructions for the code samples . 74
Working with attribute() and attributes() . 76
Finding child elements . 77
Finding descendants . 77
Finding elements . 78
Finding the parent element . 78
Locating text . 79

Finding information about XML content . 80
Finding an object’s position within its parent . 80
Determining content type . 81
Determining the number of elements . 81
Displaying the name of an element . 81
Determining the type of node . 81
Displaying a string representation of XML . 82

Modifying XML content . 82
Working with the XMLList class . 83
Working with the XMLListCollection class in Flex . 84

Setting up the Flex application . 85
Using a function to filter an XMLListCollection . 86
Sorting an XMLListCollection . 88

Understanding the Namespace class . 89
Understanding the QName class . 91
Limitations of working with the XML class . 93
Summary . 94

CONTENTS

x

Chapter 4 USING E4X EXPRESSIONS . 97

Understanding E4X expressions . 98
Working through the examples . 99

Working with Flash . 100
Working with Flex . 100

Using the dot operator to specify a path . 101
Returning text . 101
Returning an XMLList . 102
Specifying an index . 104
Finding the last element . 105
Casting returned content . 105
Using the wildcard operator (*) . 106

Using the attribute operator (@) . 108
Looping through attributes . 108
Using the descendants operator (..) . 109

Working with filter expressions . 111
Working with equality . 112
Finding inequality . 114
Other comparisons . 114
Using AND and OR in conditions . 115
Using the additive operator (+) . 116
Including other ActionScript expressions . 117

Assigning values . 117
Simple assignment with = . 118
Compound assignment with += . 118

Deleting content . 119
E4X in action . 120

Flash example . 120
Flex example . 127

Summary . 133

Chapter 5 USING THE URLLOADER CLASS WITH
XML DOCUMENTS . 135

Using the URLLoader class . 136
Properties of the URLLoader class . 136
Methods of the URLLoader class . 137
Events of the URLLoader class . 138
Limits of the URLLoader class . 139

Putting it all together . 139
Creating a URLLoader object . 139
Making the request . 139
Sending variables with the request . 140
Tracking the progress of a request . 141
Receiving a response . 142
Detecting errors . 142
Working through examples . 143

Working in Flash . 143
Working in Flex . 146

CONTENTS

xi

Updating content with the URLLoader class . 154
Sending variables in a Flash application . 154
Sending variables in a Flex application . 158

Understanding Flash Player security . 164
Understanding security sandboxes . 164
Creating a cross-domain policy file . 165

Writing a cross-domain policy file . 165
Issues with the cross-domain policy file . 166

Proxying data locally . 166
Summary . 167

Chapter 6 LOADING METHODS SPECIFIC TO FLEX 169

Loading external content . 170
Using the <mx:HTTPService> tag . 170

Properties of the <mx:HTTPService> tag . 171
Methods of the <mx:HTTPService> tag . 174
Events of the <mx:HTTPService> tag . 174
Putting it all together . 175

Creating an HTTPService request . 175
Making the request . 175
Sending variables with the request . 176
Specifying a return type . 177
Specifying a request method . 177
Receiving a response . 177

Using the HTTPService class . 178
Properties, methods, and events of the HTTPService class . 178
Putting it all together . 179

Creating an HTTPService request . 179
Making the request . 179
Sending variables with the request . 180
Specifying a return type . 180
Specifying a request method . 180
Receiving a response . 180

Accessing loaded content . 181
Accessing the lastResult property directly . 181
Binding the lastResult property . 181

Working through an <mx:HTTPService> tag example . 182
Working through an HTTPService class example . 184
Passing variables with the request . 191

Using <mx:request> to send variables . 191
Sending variables with the HTTPService class . 194

Summary . 200

CONTENTS

xii

Chapter 7 LOADING METHODS SPECIFIC TO FLASH 203

Understanding the AS 2.0 data components . 204
Understanding the XMLConnector . 206

Displaying read-only XML content . 206
Displaying updatable XML data . 207

Configuring the XMLConnector . 207
Using the Component Inspector . 208

Creating a schema from an XML document . 209
Creating a schema by adding fields . 211
Understanding schema settings . 211

Triggering the XMLConnector component . 213
Testing for a loaded XML document . 214
Working through a loading example . 214

Binding XML data directly to UI components . 215
Adding a binding . 216
Configuring the binding . 217

Working through a binding example . 219
Extending the binding example . 220

Using the DataSet component . 223
Creating bindings with a DataSet component . 224
Putting it all together . 226

Summary . 231

Chapter 8 MODIFYING XML CONTENT WITH ACTIONSCRIPT 3.0 . . . 233

Setting up the examples . 234
Setting up the Flash examples . 234
Setting up the Flex examples . 234

Changing element and attribute values . 235
Adding, editing, and deleting XML content . 237

Using appendChild() . 238
Using prependChild() . 239
Copying a node . 239
Inserting a child node . 240
Editing content . 241
Using setChildren() . 242
Deleting an element . 242

Modifying element names and namespaces . 243
Adding a namespace . 243
Removing a namespace . 244
Setting the namespace . 245
Changing the local element name . 245
Changing the qualified element name . 246

Working through a modification example . 247
Working in Flash . 248
Working in Flex . 260
Points to note about the example . 276

Summary . 277

CONTENTS

xiii

Chapter 9 COMMUNICATING WITH THE SERVER . 279

Sending data to the server . 280
Structuring the file path . 280
Sending the variables . 281

Choosing a method . 282
Choosing the format . 283

Working with the URLLoader class . 284
Sending variables with the URLLoader class . 284
Receiving a response . 285
Handling errors . 286
Working through a URLLoader class example . 286

Understanding the VB .NET page . 287
Understanding the PHP page . 290
Understanding the ColdFusion page . 291
Working through the Flash example . 292
Working through the Flex example . 298

Working with the <mx:HTTPService> element . 309
Sending variables with the <mx:HTTPService> element . 309
Receiving a response . 311
Handling errors . 312
Working through an <HTTPService> element example . 312

Working with the HTTPService class in Flex . 316
Sending variables with the HTTPService class . 316
Receiving a response . 317
Handling errors . 317
Working through a HTTPService class example . 318

Choosing the Flex approach . 326
Summary . 327

Chapter 10 CONSUMING WEB SERVICES WITH FLEX 329

Understanding web services . 330
Understanding SOAP web services . 330
Understanding the role of WSDL . 331

Using Flex to consume a web service . 333
Working with the <mx:WebService> element . 333

Creating the web service request . 333
Specifying the operation . 334
Making the request . 334
Receiving the response . 335
Accessing the reply . 335
Understanding the resultFormat of an operation . 336
Handling errors . 337
Working through a tag-based example . 337

Working with the WebService class . 344
Properties of the WebService class . 344
Methods of the WebService class . 345
Events of the WebService class . 345
Understanding the Operation class . 346

CONTENTS

xiv

Properties of the Operation class . 346
Methods of the Operation class . 347
Events of the Operation class . 348

Consuming a web service with ActionScript . 348
Creating the web service request . 348
Specifying the operation . 349
Making the request . 349
Receiving the response . 350
Accessing the reply . 350
Understanding returned data types . 351
Handling errors . 351
Working through a scripted example . 352

Using Flex Builder to manage web services . 362
Working through the Web Service Introspection wizard . 363
Managing web services . 365
Consuming the web service . 366

Using MXML tags with the generated classes . 366
Scripting the generated classes . 369

Summary . 371

Chapter 11 CONSUMING WEB SERVICES WITH FLASH 373

Consuming web services with the URLLoader class . 374
Understanding the WSDL file . 375
Using GET to consume a web service . 375

Working through a GET example . 377
Consuming a web service with POST . 384

Working through a POST example . 384
Consuming a SOAP web service with the as3webservice extension 388

Working through an as3webservice example . 389
Consuming a SOAP web service with the WebServiceConnector component 393

Configuring the WebServiceConnector . 393
Adding parameters . 394
Determining the arguments for the operation . 395
Adding parameter bindings . 395
Triggering the web services call . 397
Binding the results . 397
Accessing the results in ActionScript . 399

Viewing the Web Services panel . 399
Working through a WebServiceConnector example . 401

Summary . 405

Chapter 12 FLASH CASE STUDY . 407

Understanding Flickr . 408
Applying for a Flickr key . 409
Making a Flickr request . 409

CONTENTS

xv

Understanding the Flickr API . 409
Understanding the returned photo XML document . 410
Understanding the returned people XML document . 410
Finding recent photos . 411
Finding interesting photos . 412
Searching for photos . 412
Finding owner information . 413

Receiving a Flickr response . 413
Receiving photo information . 414
Receiving person information . 414
Finding the URL of a photo . 414
Finding the page containing the photo . 415

Building the application . 416
Working through the interface . 416
Setting up the application . 417
Getting the recent photos list . 419
Displaying a large image and title . 423
Adding paging functionality . 426
Making cosmetic changes to the interface . 427
Viewing interesting photos . 428
Searching Flickr . 429
Showing owner information . 430

Summary . 436

Chapter 13 FLEX CASE STUDY . 439

Understanding Adobe Kuler . 439
Applying for a Kuler key . 441
Understanding the Kuler feeds . 441

Accessing an existing feed . 441
Searching Kuler . 442

Receiving a Kuler response . 444
Building the application . 446

Working through the interface . 447
Setting up the application . 448
Creating the custom class file . 449
Getting the highest rated themes . 453
Displaying the theme . 458
Adding paging functionality . 465
Displaying the most popular schemes . 468
Searching Kuler . 470
Reviewing the completed code . 471

KulerLoader.as . 471
ColorSwatch.mxml . 474
KulerCompleted.mxml . 475

Summary . 478

Index . 480

xvii

ABOUT THE AUTHOR

Sas Jacobs is a web developer and author who works with Flash,
Flex, and XML. Sas has written several books on these topics and has
spoken about them at conferences such as Flashforward, webDU,
and FlashKit. Nowadays, Sas works as a software developer in the
area of e-learning, where she tries to share her passion for all things
ActionScript.

When she’s not working, Sas loves traveling, photography, running,
and her son.

xix

Kevin Ruse is the principal of Kevin Ruse and Associates Inc., a web and print design and
consulting firm based in Santa Clara, California. Kevin has been a trainer in web development
and graphic design in a variety of environments, including De Anza Community College and
the University of California, Santa Cruz. Kevin has also taught the staff and faculty at Stanford
University and University of California, Berkeley.

Kevin is an Adobe Certified Instructor and a Certified Training Partner for the Altova XML Suite
of software and the <oXygen/> XML editor. He currently teaches the following languages and
software: Flex, Fireworks, Flash, Dreamweaver, Photoshop, InDesign, Acrobat, Quark XPress,
JavaScript, ActionScript, MXML, XML, XSLT, DTD/Schema, ColdFusion, HTML, XHTML, and CSS.

Kevin is the author of Web Standards Design Guide, a college textbook. He is an enthusiastic
instructor who maintains a strong belief that with patience, determination, and guidance, all
individuals can reach their maximum potential.

ABOUT THE TECHNICAL REVIEWER

xxi

Corné van Dooren designed the front cover image for this book.
After taking a brief from friends of ED to create a new design for the
Foundation series, he worked at combining technological and organic
forms, with the results now appearing on this and other books’
covers.

Corné spent his childhood drawing on everything at hand and then
began exploring the infinite world of multimedia, and his journey
of discovery hasn’t stopped since. His mantra has always been, “The
only limit to multimedia is the imagination,” a saying that keeps him
moving forward constantly.

Corné works for many international clients, writes features for multimedia magazines, reviews and
tests software, authors multimedia studies, and works on many other friends of ED books. You can
see more of his work at and contact him through his web site, .

If you like Corné’s work, be sure to check out his chapter in New Masters of Photoshop: Volume 2
(friends of ED, 2004).

ABOUT THE COVER IMAGE DESIGNER

xxiii

Thanks again to all the people at friends of ED for your hard work in putting this book together.
You’re a great team and, as always, it has been a pleasure working with you.

ACKNOWLEDGMENTS

xxv

This book started out as an update to my first book on Flash and XML. Originally, the idea was
to update the content with the changes to XML in ActionScript 3.0. However, when it came to
drafting the table of contents, I realized that there was a whole audience of Flex developers who
would also benefit from a book about XML and ActionScript 3.0. Hence, this book was born!

So, my plan is for this book to cater to both audiences: Flash designer/developers and Flex devel-
opers. I’ve included common code approaches, as well as topics that are specific to each package.
I’ve tried to show readers how to achieve the same XML results in both software packages.

This book is best suited to people who have limited experience in the areas of XML and
ActionScript 3.0. It is really pitched at introductory level users who are keen to learn more
about ActionScript 3.0. The book is purposely simple in its approach, showing how to achieve
common tasks required for working with XML in Flash and Flex. The Flash sections show
function-based approaches, whereas the Flex sections show how to work with custom classes.

I hope that you find this book useful and that it whets your appetite for working with XML in
your SWF applications. Hopefully, you’ll find that the power and simplicity of XML will inspire
you in your Flash and Flex development efforts!

Layout conventions
To keep this book as clear and easy to follow as possible, the following text conventions are
used throughout:

 Important words or concepts are normally highlighted on the first appearance in italics.

Code is presented in .

New or changed code is normally presented in .

Pseudo-code and variable input are written in .

Menu commands are written in the form Menu Submenu Submenu.

Where I want to draw your attention to something, I’ve highlighted it like this:

Ahem, don’t say I didn’t warn you.

Sometimes code won’t fit on a single line in a book. Where this happens, I use an arrow
like this: .

INTRODUCTION

1

Chapter 1

If you work in the web design or development area, you’ve probably heard of XML.
It’s the basis of all modern web sites, but how many of us actually know what it
really means?

This chapter introduces XML and explains why it is such an important standard for
exchanging information. I’ll cover some of the basic concepts behind XML, including
the rules governing the structure of XML documents. I’ll also review some of the uses
for XML and the reasons you might need to use it in your SWF applications. You’ll
see some examples of XML documents and, by the end of the chapter, have a solid
understanding of XML and its related concepts.

If you’re already familiar with XML and are comfortable generating XML docu-
ments, feel free to skip forward to Chapter 3. If not, read on! You can download the
resources referred to in this chapter from .

What is XML?
Let’s start by answering the most basic question of all: what is XML? It’s very difficult
to provide a short answer to this question. The people who invented XML, the World
Wide Web Consortium (W3C), provide the following definition for XML in their glos-
sary at ml.

INTRODUCTION TO XML

2

CHAPTER 1

Extensible Markup Language (XML) is an extremely simple dialect of SGML. The goal is to enable generic
SGML to be served, received, and processed on the Web in the way that is now possible with HTML. XML
has been designed for ease of implementation and for interoperability with both SGML and HTML.

I think the definition is very accurate if you already know about XML, but it doesn’t really explain XML
to a novice. Let’s go back to basics and see what that definition really means.

Understanding XML
XML describes a format that you can use to share information. By itself, XML doesn’t do anything other
than store information. It’s not a programming language, so you can’t use it to create stand-alone
applications. XML simply describes information. XML documents need humans or software packages
to process the information that they contain.

XML stands for Extensible Markup Language, which is a little misleading, because XML is actually
a metalanguage, so you can use it to create other markup languages. That’s what the word extensible
means in the acronym. The term markup means that the languages you create use tags to surround
or mark up text, which you’ll be familiar with if you write Extensible Hypertext Markup Language
(XHTML).

In fact, XHTML is one of the languages created by XML. We call XHTML a vocabulary of XML. It was
created when HTML was redefined according to XML rules. For example, in XHTML, all tags must be in
lowercase. This requirement doesn’t apply to HTML.

Think about the tags you use in XHTML, such as and . These tags mark up infor-
mation that will display on a web page. You use these in a very specific way, according to some
predefined rules. For example, one rule says that you can’t include tags in the section
of a web page.

It’s possible to make up your own XML vocabulary or work within a group to create an industry-wide
language based on XML. By agreeing on an XML vocabulary, groups can share information using
a common set of markup tags and structures. Chemical Markup Language (CML), for example, allows
scientists to share molecular information in a standardized way. There are specific rules for structur-
ing CML documents and referring to molecular information. MathML is another vocabulary of XML
that describes mathematical operations. But you don’t need to work with an existing vocabulary to
include XML in your applications. It’s possible—in fact, very likely—that you’ll create your own XML
structures to suit the particular needs of your application. You’ll see this as we work through the
examples in the book.

So what type of information can you store in an XML document?

Storing information in XML documents
XML documents work best with structured information, similar to what you would find in a database.
Examples include lists of names and addresses, product catalogs, sales orders, an iTunes library—
anything with a standardized format. Like a database, XML documents can show hierarchical relation-
ships. Instead of breaking the information into tables and fields, elements and tags describe the data.
By nesting tags inside each another, you can create a hierarchy of parent and child elements.

2

3

INTRODUCTION TO XML

The following code block shows some sample XML elements. You can see the hierarchical relationship
between the elements, and the tag names describe their contents.

The code sample describes contact details, similar to what you would see in an address book. Most of
us have an address book that we use to store contact information about our friends and colleagues.
You might have the information in a software package like Outlook or Outlook Express. It might also
exist on your mobile phone.

Your address book contains many different names, but you store the same information about each
contact: name, phone number, and address. The way the information is stored depends on the soft-
ware package you’ve chosen. If the manufacturer changes the package or discontinues it, you’ll need
to find a new way to store information about your contacts.

Transferring the information to a new software program is likely to be difficult. You’ll need to export it
from the first package, rearrange the contents to suit the second package, and then import the data.
Most software applications don’t share a standard format for contact data, although some can share
information. You must rely on the standards created by each company.

As an alternative, you could use an XML document to store the information. You could create your
own tag names to describe the data. Tags like , , and would provide clear
descriptions for your information. Any human who read the document would be able to understand
what information the document held.

Because the address book XML document has a standard format, you could use it to display your
contacts on a web page. Web browsers contain an XML parser to process the XML content. You
could also print out your contacts, or even build a SWF movie in Flash or Flex to display and manage
your contacts.

Your friends could agree on which tags to use and share their address books with each other. You
could all save your contacts in the same place and use tags to determine who had contributed each
entry. When you use a standardized structure for storage, you have endless choices about how to
work with the information.

So if XML is so useful, how did it all start?

XML, in the beginning
XML has been around since 1998. It is based on Standard Generalized Markup Language (SGML),
which was in turn was created out of Generalized Markup Language (GML) in the 1960s. XML is actu-
ally a simplified version of SGML.

SGML describes how to write languages, specifically those that work with text in electronic documents.
It is also an international standard: ISO 8879. SGML was actually one of the considerations for HTML
when it was first developed.

3

4

CHAPTER 1

The first XML recommendation was released in February 1998. Since then, XML has increased in popu-
larity and is now a worldwide standard for sharing information. Human beings, databases, and many
popular software packages use XML documents to store and exchange information. Web services and
RSS feeds also use an XML format to share content over the Internet.

The W3C developed the XML specification. The W3C also works with other recommendations such as
HTML, XHTML, and Cascading Style Sheets (CSS). Detailed information about the XML specification
is available from the W3C’s web site at . The current specification is XML
1.1 (Second Edition), dated 16 August 2006. You can view this specification at

6/.

The W3C has also created a family of related recommendations that work together to create an
independent framework for managing markup languages. The other areas covered by recommen-
dations include XML schemas, which describe the structure and syntax of an XML document; XML
stylesheets, which allow the transformation and output of XML content; and XPath, which describes
how to navigate or locate specific parts of XML documents.

When it created XML, the W3C published the following goals at
ls:

1. XML shall be straightforwardly usable over the Internet.

2. XML shall support a wide variety of applications.

3. XML shall be compatible with SGML.

4. It shall be easy to write programs which process XML documents.

5. The number of optional features in XML is to be kept to the absolute minimum, ideally zero.

6. XML documents should be human-legible and reasonably clear.

7. The XML design should be prepared quickly.

8. The design of XML shall be formal and concise.

9. XML documents shall be easy to create.

10. Terseness in XML markup is of minimal importance.

In other words, XML should be easy to use in a variety of settings, by both people and software appli-
cations. The rules for XML documents should also be clear so they are easy to create.

An XML example
The following code block shows a simple XML document with address book data containing a single
contact. If you’ve worked with XHTML, you’ll see that the elements are written in a similar way.

5

INTRODUCTION TO XML

The information is stored between tags, and the names of these tags are descriptive—for example,
, , and . The casing of the opening and closing tags is consistent. The hierar-

chy within the document shows that the information relates to a single element. You can
use any names for these elements, as long as you follow the rules for constructing XML documents.
These rules are presented in the “Structuring XML documents” and “Understanding well-formed
documents” sections later in the chapter.

Now that you know a little more about XML, you may be wondering why it is so important and why
might you want to use XML as a source of data.

Why XML?
Quite simply, XML is simple, flexible, descriptive, accessible, independent, precise, and free! Let’s look
at each of these advantages of XML in turn.

Simple
The rules for creating XML documents are very simple. You just need a text editor or another software
package capable of generating XML formatted data. The only proviso is that you follow some basic
rules so that the XML document is well-formed. You’ll find out what this means a little later in the
chapter, in the “Understanding well-formed documents” section.

Reading an XML document is also simple. Tag names are normally descriptive, so you can figure out
what data each element contains. The hierarchical structure of elements allows you to work out the
relationships between each piece of information.

Flexible
One key aspect of XML is its flexibility. As long as you follow some simple rules, you can structure an
XML document in any way you like. The choice of tag names, attributes, and structures is completely
flexible so you can tailor it to suit your data. You can also agree on an XML vocabulary so you can
share information with other people. A Document Type Definition or schema describes the “gram-
mar,” or rules for the language.

XML documents provide data for use in different applications. You can generate an XML document
from a corporate software package, transform it to display on a web site using Extensible Stylesheet
Language Transformations (XSLT), share it with staff on portable devices, use it to create PDF files with
Extensible Stylesheet Formatting Objects (XSL-FO), and provide it to other software packages. You can
reuse the same data in several different settings. The ability to repurpose information is one of XML’s
key strengths.

XSLT and XSL-FO are two related XML recommendations. Both of these recommenda-
tions describe how to change or transform an XML document into a different type of
output. You might use an XSLT stylesheet to create HTML or text from an XML docu-
ment. You could use XSL-FO to create a PDF document.

6

CHAPTER 1

The way XML information displays is also flexible. You can display any XML document in any XML
processor, perhaps a web browser, to see the structure of elements. You can also use the document
to display the following:

 A printed list of summary data

 A web page displaying the full details of each element

 A SWF movie that allows you to search the XML content

Descriptive
Because you can choose your own tag names, an XML document becomes a description of your data.
Some people call XML documents self-describing.

The hierarchy of elements means that XML documents show relationships between information in
a similar way to a database. For example, the hierarchies in the address book document tell us that
each contact has a name, address, and phone number, and that we can store many different contacts.

Accessible
XML documents separate data from presentation, so you can have access to the information without
worrying about how it displays. This makes the data accessible to many different people, devices, and
software packages. For example, the sample address book XML document could be accessed in the
following ways:

 Read aloud by a screen reader

Displayed on a web site

 Printed to a PDF file

 Processed automatically by a software package

Viewed on a mobile phone

XML documents use Unicode for their standard character set, so you can write XML documents in any
number of different languages. (The Unicode standard is maintained by the Unicode Consortium; see

.) A SWF application could offer multilingual support simply by using differ-
ent XML documents with equivalent content.

Independent
XML is platform- and device-independent. It doesn’t matter if you view the data on a PC, Macintosh,
or handheld device. The data is still the same, and people can exchange it seamlessly. Programmers
can also use XML to share information between software packages that otherwise couldn’t easily com-
municate with each other.

You don’t need a specific software package to work with XML documents. You can type the content
in just about any software package capable of receiving text. You can read the document in a web
browser, text editor, or any other XML processor. XML documents can provide a text-based alternative
to database content. In the case of web services, XML is an intermediary between you and someone
else’s database.

7

INTRODUCTION TO XML

XML doesn’t have “flavors” that are specific to a single web browser (like CSS), version, or operating
system. You don’t need to create three different versions of your XML document to handle different
viewing conditions.

Precise
XML is a precise standard. If you want your XML document to be read by an XML parser, it must be
well-formed. Documents that aren’t well-formed won’t display. You’re probably wondering what
well-formed means. We’ll cover that a little later, in the “Understanding well-formed documents” section.

When a schema or Document Type Definition is included within an XML document, an XML processor
can validate the content to make sure that the document structure conforms to the structural rules
you’ve established. XML documents with schemas provide standards, so there is only one way that the
data they contain can be structured and interpreted.

Free
XML is a specification that isn’t owned by any company or commercial enterprise. This means that it’s
free to use XML—you don’t have to buy any special software or other technology. In fact, most major
software packages either support XML or plan to support it in the future.

So why should you use XML in your Flash and Flex projects?

Why is XML important in Flash and Flex?
XML is an important tool for all web developers. Many people consider XML the lingua franca of the
Internet as it provides the standard for data exchange among humans and machines in many different
settings.

An understanding of XML is essential for Flash and Flex developers for the following reasons:

XML is one way for Flash and Flex developers to store content that powers SWF movies.

Flex uses a vocabulary of XML, called MXML, to describe interfaces.

XML provides a mechanism for working with data that is disconnected from a database or the
Internet.

 ActionScript 3.0 contains features to make working with XML much easier than in previous
versions, so it’s a sound alternative to plain-text files for content.

XML as a SWF data source
Storing content outside a SWF application means that clients can update their own content without
needing to learn either Flash or Flex, or contact the developer each time they want to make a change.
It’s also possible to provide client tools that make it easy to generate the content automatically.

Developers will understand the importance of storing information for SWF movies in an external data
source. Doing so allows the content of a SWF application to change without the need to recompile it
each time. Simply update the source document to update the information within the application.

8

CHAPTER 1

There are many possible sources of external data: text files, databases, and XML documents. While it’s
possible to create external text files for a SWF file, it’s more practical to use an XML document, which
can include the data and describe the hierarchical relationships between the data.

Although a developer or client can create an XML document by hand, it’s easier to generate the
content automatically. With the assistance of a web server and a server-side language like PHP, Visual
Basic .NET (VB .NET), or ColdFusion, databases can easily generate XML content suitable for a SWF
application. You’ll see how this can be done in the next chapter. In terms of security, it’s good practice
to use an XML layer between a user and database.

Many software packages are capable of exporting their content in an XML format. The most recent
versions of Microsoft Office allow you to save Word, Excel, and Access documents using either
Microsoft’s XML vocabularies or your own. Using standard business tools to generate XML content
allows clients to take control of their own application content.

For SWF applications that need to be portable, XML is an excellent choice as a data source. An XML
document is usually small in file size, making it easy to include on a CD, DVD, or handheld device.

MXML in Flex
In order to get the most out of Flex, developers need a good understanding of XML. Flex uses an XML
vocabulary called MXML to describe application interfaces. MXML is a markup language that provides
the same role in Flex applications as XHTML does in web pages.

MXML consists of a set of tags that correspond to ActionScript 3.0 classes. Because MXML is a vocabu-
lary of XML, it must follow the same rules and be well-formed. I’ll cover this term in more detail later
in the chapter.

ActionScript 3.0 and XML
ActionScript 3.0 greatly simplifies the process of working with XML documents compared with earlier
versions. XML is a native data type in this version of ActionScript, making it much easier to work with
in both Flash and Flex.

If you’ve worked with XML in an earlier version of ActionScript, you’ll be used to writing complicated
expressions and looping through collections of nodes to locate specific information in an XML docu-
ment. The new process means that you can target content in an XML document by using element
names instead. This change is significant and makes working with XML content much easier than in
earlier versions of ActionScript. I have found that ActionScript 3.0 has saved me hours of develop-
ment time when it comes to working with XML content. You’ll find out more about the changes to
ActionScript in Chapter 3.

ActionScript 3.0 also includes a full implementation of the ECMAScript for XML (E4X) standard,
 ECMA-357 (see df).
Because ActionScript 3.0 adheres to international standards, you can take advantage of any existing
knowledge you have in this area. Learning E4X means that you’ll be able to apply the same skills when
working with JavaScript.

Now that you appreciate why XML is important to Flash and Flex developers, let’s look more closely
inside an XML document.

9

INTRODUCTION TO XML

XML document sections
It’s important to understand exactly what the term XML document means. This term refers to a collec-
tion of content that meets XML construction rules. The document part of the term has a more general
meaning than with software packages. In Flash or Flex, for example, a document is a physical file.
While an XML document can be a physical file, it can also refer to a stream of information that doesn’t
exist in a physical sense. You can create these streams from a database using a web server, and you’ll
see how this is done later in the book. As long as the information is structured according to XML rules,
it qualifies as an XML document.

An XML document is divided into two sections: the prolog and the content, or document tree. The
content exists inside the document root or root element.

Document prolog
The document prolog appears at the top of an XML document and contains information about the
XML document as a whole. It must appear before the root element in the document. The prolog is
a bit like the section of an XHTML document.

The prolog consists of the following:

 An XML declaration

 Processing instructions

Document Type Definitions (DTDs)

XML declaration
The prolog usually starts with an XML declaration to indicate to humans and computers that the con-
tent is an XML document. This declaration is optional but if it is present, it must appear on the first
line. At a minimum, the declaration appears as follows:

The minimum information that must appear inside an XML declaration is an XML version. The preced-
ing declaration uses version 1.0.

At the time of writing, the latest recommendation is XML 1.1. However, you should
continue to use the attribute value for backward-compatibility with
XML processors, unless you specifically need version 1.1. For example, XML 1.1 allows
characters that can’t be used in XML 1.0 and has slightly different requirements for
namespaces.

The XML declaration can also include the and attributes. The order of these
attributes is important.

Encoding determines the character set for the XML document. You can use Unicode character sets
UTF-8 and UTF-16 or ISO character sets like ISO 8859-1, Latin-1, or Western European. If no
attribute is included, it is assumed that the document uses UTF-8 encoding. Languages like Japanese

10

CHAPTER 1

and Chinese need UTF-16 encoding. Western European languages often use ISO 8859-1 to cope with
diacritical characters, such as accent marks, that aren’t part of the English language.

The attribute must appear after the attribute. Here are some sample declarations
that include an attribute:

The attribute indicates whether the XML document uses external information, such as
a DTD. A DTD specifies the rules about which elements and attributes to use in the XML document. It
also provides information about the number of times each element can appear and whether an ele-
ment is required or optional.

The attribute is optional. When it’s included, it must appear as the last attribute in the
declaration. The value can’t be used when you are including an external DTD or
stylesheet. Here is an XML declaration that includes this attribute:

Processing instructions
The prolog can also include processing instructions (PIs). Processing instructions pass information
about the XML document to other applications that may need that information in order to process
the XML.

Processing instructions start with the characters and end with . You can add your own pro-
cessing instructions or have them generated automatically by software packages. The first item in
a processing instruction is a name, called the processing instruction target. Processing instruction
names that start with are reserved.

One common processing instruction is the inclusion of an external XSLT stylesheet. An XSLT stylesheet
transforms the content of an XML document into a different structure, and I’ll cover this topic in more
detail later in this chapter, in the “Understanding XSL” section. A processing instruction that includes
an XSLT stylesheet must appear before the document root. The following line shows how this process-
ing instruction might be written:

Processing instructions can also appear in other places in the XML document.

Document Type Definitions
DTDs, or DOCTYPE declarations, can also appear in the prolog. A DTD provides rules about the struc-
ture of elements and attributes within the XML document. It explains which elements are legal in
the XML document, and tells you which elements are required and which are optional. In other
words, a DTD provides the rules for a valid XML document and explains how the document should be
constructed.

11

INTRODUCTION TO XML

The prolog can include a set of declarations about the XML document, a bit like an embedded CSS
stylesheet in an XHTML document. The prolog can also include a reference to an external DTD as well
as or instead of these declarations. The following shows an external reference to a DTD:

All the other content in an XML document appears within the document tree.

Document tree
Everything that isn’t in the prolog is contained within the document tree. The tree contains all of the
content within the document. The section “Structuring XML content” explains exactly what items
appear here.

The document tree starts with a document root or root element. An XML document can have only one
root element. All of the content within the XML document must appear inside the document root. In
HTML documents, the tag is the root element. This is a rule of a well-formed document.

Whitespace
XML documents include whitespace so that humans can read them more easily. Whitespace refers to
spaces, tabs, and returns that space out the content in the document. The XML specification allows
you to include whitespace anywhere within an XML document except before the XML declaration.

XML processors can interpret whitespace in an XML document, but many won’t actu-
ally display the spaces. If whitespace is important, there are ways to force an XML
processor to display the spaces using the attribute in an element. I’ll leave
you to research that topic on your own if it’s something you need to do.

Namespaces
XML documents can get very complicated. One XML document can reference another XML document,
and different rules may apply in each case. XML documents can also summarize content from multiple
sources. For example, you might combine several different XML documents into one.

It’s possible that an XML document will contain elements that use the same name but that come from
different locations and have different meanings. For example, you might use the element
as part of an XHTML reference in a document about furniture, which also needs to use a
element as a description of the type of furniture.

In order to overcome this problem, you can use namespaces to distinguish between elements.
Namespaces associate each XML element with an owner to ensure it is unique within a document,
even if there are other elements that use the same name.

Each namespace includes a reference to a Uniform Resource Identifier (URI) as a way to ensure its
uniqueness. A URI is an Internet address, and each URI must be unique in the XML document. The
URIs used in an XML document don’t need to point to anything, although they can.

12

CHAPTER 1

You can define a namespace using the attribute within an element. Each namespace usually has
a prefix that you use to identify elements belonging to that namespace. You can use any prefix that
you like, as long as it doesn’t start with and doesn’t include spaces.

Here is an example of using a namespace:

In the element, the prefix refers to the namespace .
You can also use this prefix with other elements and attributes to indicate that they are part of the
same namespace, like this:

This prefix indicates that the element also comes from the
 namespace.

You can also define a namespace without using a prefix. If you do this, the namespace will apply to all
elements that don’t have a prefix or namespace defined. It is referred to as the default namespace.

In an XHTML document, the element includes a namespace without a prefix:

The namespace then applies to all of the child elements of the element; in other words, all of
the remaining elements in the XHTML document.

It isn’t compulsory to use namespaces in your XML documents, but it can be a good idea. Namespaces
are also important when you start to work with schemas and stylesheets. ActionScript 3.0 provides
mechanisms for working with namespaces when dealing with complex XML documents in SWF
applications.

You can find out more about namespaces by reading the latest recommendation at the W3C site. At
the time of writing, this was the Namespaces in XML 1.1 (Second Edition) recommendation at

1/.

Structuring XML documents
XML documents contain both information and markup. The information about the document appears
in the prolog, as discussed in the previous section. You can divide markup into the following:

 Elements

 Attributes

Text

 Entities

13

INTRODUCTION TO XML

Comments

CDATA

Let’s look at each of these items in turn, starting with elements.

Elements
Each XML document contains one or more elements, and they will usually make up the bulk of the
document. Elements, also called nodes, identify and mark up content. At the very minimum, an XML
document will contain one element: the document root.

Elements serve many functions in an XML document:

 Elements mark up content. The opening and closing tags surround text.

Tag names provide a description of the content they mark up. This gives you a clue about the
purpose of the element.

 Elements provide information about the order of data in an XML document.

The position of child elements can show their relative importance in the document.

 Elements show the relationships between blocks of information. Like databases, they show how
one piece of data relates to others.

Writing elements
As in XHTML, XML tags start with a less-than sign () and end with a greater-than sign (). The name
of the tag appears between these signs: .

Although they are often used interchangeably, the terms element and tag have
slightly different meanings. A tag looks like this:

An element looks like this:

An element usually contains both an opening tag and a closing tag, as well as
the text node in between those tags.

If an element contains information or other elements, it will include both an opening and closing tag:
. An empty element can be written using a single tag: . So, is

equivalent to . (In XHTML, the and tags are examples of empty elements.)

As explained earlier, you can include whitespace anywhere within an XML document, so you can split
elements across more than one line, as shown here:

14

CHAPTER 1

Naming elements
Element names must follow these rules:

 Element names can start with either a letter or the underscore character. They can’t start with
a number.

 Element names can contain any letter or number, but they can’t include spaces. In addition,
there cannot be a space between the opening angle bracket () and the element name.

 Although it’s technically possible to include a colon () character in an element name, it’s not
a good idea, because colons are used when referring to namespaces.

It’s best to use a meaningful name that describes the content inside the tags. This element name:

is more useful than this one:

Notice that I’ve used camel case in the first example, where I capitalize the first letter
of every word in the tag name except for the first: . This naming practice is
common among developers and can help to make the name more readable.

It’s also a good idea to be careful not to add extra spaces between the tag names and the contents.
For example using this form:

is preferable to using this one:

If you needed to sort using the contents, the extra space in the second example would distort the sort order.

Populating elements
There are unlimited variations in the content that you can store in an element. The following element
contains two tags and some text:

Elements can include other nested elements and text. They can also be empty, without any text or
elements.

You call an element inside another a child element or child node. Not surprisingly, the element that
contains the child is called the parent.

15

INTRODUCTION TO XML

The family analogy continues with grandparent and grandchild elements, as well as siblings.

You can also mix the content of elements, which means they can contain text as well as child
elements, as in this example:

The first element
The first element in an XML document is called the root element, document root, or root node. It con-
tains all the other elements in the document. Each XML document can have only one root element.
The last tag in an XML document will almost always be the closing tag for the root element.

XML is case-sensitive. For example, the tags and are not equivalent and
can’t be used to open and close the same element. This is a big difference from HTML, and one of the
changes introduced with XHTML.

It’s possible to modify the opening tag of an element to include an attribute.

Attributes
Attributes provide additional information about an element to clarify or modify the element. Attributes
are stored in the opening tag of an element after the element name.

Writing attributes
Each attribute consists of a name and a related value, as shown here:

The value of an attribute appears in quotation marks (quotes) and is separated from the attribute
name with an equals sign. It doesn’t matter whether you use single or double quotes. You can even
mix and match the quotes in the same element, like this:

Use double quotes where a value contains an apostrophe.

Use single quotes where double quotes make up part of the value.

An attribute can’t include tags within its value.

An XHTML image tag is a good example of an element that contains multiple attributes.

16

CHAPTER 1

There is no limit to the number of attributes that can appear within an element, but attributes inside
the same element must have unique names. When you are working with multiple attributes in an ele-
ment, the order isn’t important.

Naming attributes
Attribute names follow the same naming conventions as elements: you can’t start the name with
a number, and you can’t include spaces inside the name. Some attribute names are reserved, so you
shouldn’t use them in your XML documents. Reserved names include the following;

Notice that all of these names have the prefix, indicating that they’re within the XML specifica-
tion. These attribute names are called qualified names. You can use the unqualified versions of these
attribute names. So, , , , and would be fine.

Structuring attributes as elements
You can rewrite attributes as nested elements, as follows:

The preceding XML fragment could also be written in this way:

There is no one right way to structure elements and attributes. The method you choose depends on
your data. The way you’re going to process the XML document might also influence your choices. For
example, some software packages have more difficulty working with attributes than they do working
with elements.

Text
Text refers to the content in an XML document that is marked up by the tags. Text is any nonelement
information stored between opening and closing element tags. In the following line, the text

 is stored between the and tags:

Unless you specify otherwise, the text between the opening and closing tags in an element will always
be processed as if it were XML. This means that special characters such as and must be replaced
with the entities ; and to prevent an error in the XML processor. Entities are discussed in the

17

INTRODUCTION TO XML

next section. An alternative is to use a CDATA declaration to present the information, as explained
a little later, in the “CDATA” section.

Entities
Character entities are symbols that represent a single character. In HTML, character entities are used
for special symbols such as an ampersand () and a nonbreaking space (). Table 1-1 lists
the common entities that you’ll need to use.

Table 1-1. Entities commonly used in XML documents

Character Entity

<

>

‘

“

&

Character entities replace reserved characters in XML documents. All tags start with a less-than sign,
so it would be confusing to include another one in your code, like this:

To avoid causing an error during processing, replace the less-than sign with the entity :

Some entities use Unicode numbers. You can use numbers to insert characters that you can’t type on
a keyboard or choose not to type because they conflict with an XML parser (such as). For example,
the entity creates the character é—an e with an acute accent. The number 233 is the Unicode
number for the character é.

You can also use a decimal or hexadecimal number to refer to a character. For more information
about this topic, see .1.

Comments
Comments in XML work the same as in XHTML. They begin with the characters and end with >.

Comments are a useful way to leave messages for other users of an XML document without affecting
the way the XML document is processed. In fact, software that processes XML always ignores com-
ments in XML documents.

18

CHAPTER 1

The following are the only requirements for comments in XML documents:

 A comment can’t appear before the first line in an XML declaration.

Comments can’t be nested or included within tag names.

You can’t include inside a comment.

Comments shouldn’t split tags; that is, you shouldn’t comment out just an opening or closing tag.

CDATA
CDATA stands for character data. CDATA blocks mark text so that it isn’t processed as XML. For
example, you could use CDATA for information containing characters that would confuse an XML
processor, such as and . Doing so means that any or character contained within the CDATA
block won’t be processed as part of a tag name.

CDATA sections start with and finish with . The character data is contained within square
brackets inside the section.

Entities will display literally in a CDATA section, so you shouldn’t include them. For example, if you add
 to your CDATA block, it will display the same way when the XML document is processed, rather

than as a left-angle bracket character.

The end of a CDATA section is marked with the characters, so you can’t include these inside
a CDATA block.

A simple XML document
So far, I’ve explained the structure and contents of XML documents. Now it’s time to put this knowl-
edge into practice to create a complete XML document.

The following listing (provided as the file with this chapter’s resources) shows a simple
XML document based on the address book example introduced earlier in the chapter. I’ll use this
example throughout the rest of the chapter.

19

INTRODUCTION TO XML

The first line declares the document as an XML document with UTF-8 encoding. The declaration is not
required, but it’s good practice to include it on the first line. A software package that opens the file
will immediately identify it as an XML document.

The remaining lines of the XML document contain elements. The first element , the docu-
ment root, contains the other elements , , , and . There is a hier-
archical relationship between these elements.

There are two elements. They share the same parent and are child nodes of
that element. They are also siblings to each other. The document uniquely identifies each
element using an attribute.

The element contains the , , and elements, and they are child
elements of the tag. The , , and elements are grandchildren of
the element.

The last line of the document is a closing tag, written with exactly the same capitaliza-
tion as the first tag.

In this document tree, the trunk of the tree is the tag. Branching out from that element
are the elements. Each element has , , and branches.

Figure 1-1 shows the relationships between the elements in the phone book XML document.

Figure 1-1. The elements within the phone book XML document

20

CHAPTER 1

In this example, I’ve created my own element names. These names are descriptive, so it’s easy to figure
out what I’m describing. If I want to share the rules for my phone book XML document with other
people, I can create a DTD or XML schema to describe how to use the elements.

I can view this, or any other XML document, by opening it in a web browser, as browsers contain XML
processors. Figure 1-2 shows the file displayed in Mozilla Firefox.

Figure 1-2. An XML document opened in Firefox

You can see that Firefox adds coloring to make the document tree easier to read. Most recent web
browsers do this. Firefox also adds minus signs so that you can collapse sections of the document.

Throughout this chapter, I’ve referred to the rules for creating XML documents. These rules ensure
that you’ll create documents that are well-formed.

Understanding well-formed documents
Correctly constructed XML documents are said to be well-formed. The W3C created this term to pro-
vide rules that people and software packages must follow when constructing XML documents, and it
has a specific technical meaning.

Well-formed documents meet the following criteria:

The document contains one or more elements.

The document contains exactly one root element, which may contain other nested elements.

 Elements nest correctly within each another.

21

INTRODUCTION TO XML

 Each element closes properly.

Opening and closing tags have matching case.

 Attribute values are contained in quotes.

Let’s look at each of these rules in a little more detail.

Element structure
An XML document must have at least one element: the document root. It doesn’t need to have any
other content, although it usually will.

The following XML document is well-formed, and it contains the single element :

Of course, this document doesn’t contain any information, so it’s not likely to be very useful.

It’s more likely that you’ll create an XML document where the root element contains other elements.
The following listing shows an example of this structure:

This XML document contains a single element with other child elements. As long as all of
the elements appear inside a single root element, the document is well-formed.

Element nesting
Well-formed documents close elements in the correct order. In other words, child elements must close
before their parent elements, and nested elements must close in the reverse order of their opening.

The following line is incorrect:

The element opened first, so it should close last, as follows:

Element closing
A well-formed document closes all elements correctly. In the case of a nonempty element, the ele-
ment closes with an ending tag, which must appear after the opening tag and the element content.

22

CHAPTER 1

A forward slash character () appears at the beginning of the closing tag.

You can close empty elements by adding a forward slash to the opening tag, as follows:

XHTML elements such as and provide a good illustration of this rule.

You can also write empty elements with a closing tag immediately after the opening tag, as shown here:

This example is equivalent to the preceding one.

Element opening and closing tags
As XML is case-sensitive, opening and closing tag names must match their case exactly. The following
examples are incorrect:

The correct form is like this:

or like this:

Quotes for attributes
All attribute values must appear inside either double or single quotes, as follows:

If your attribute value contains a single quote, you’ll need to use double quotes, and vice versa. Use
a form like this:

or like this:

You could also replace the quote characters inside an attribute value with character entities, as
follows:

23

INTRODUCTION TO XML

See the earlier section on “Entities” for more information about which character entities you can use
in an XML document.

Documents that aren’t well-formed
If you try to work with an XML document that is not well-formed, the XML processor will not be
able to parse the document and will generate an error. For example, opening a document that isn’t
well-formed in a web browser causes the error shown in Figure 1-3.

Figure 1-3. Firefox displays an error when you try to open a document that isn’t well-formed.

In this case, the error message shows that the closing element name was expected.

You can test this with the file , included with this chapter’s resources.
Try opening it in a web browser to see the error.

You’ll also see an error if you try to work with a document that isn’t well-formed in a Flash or Flex
application.

As long as you follow the rules outlined in this section when creating XML content, you’ll generate
well-formed XML documents.

The term well-formed doesn’t have the same meaning as the term valid
when applied to an XML document. A well-formed document follows the
rules outlined in this section. A valid document is one that is constructed
correctly according to the rules contained within an XML schema or DTD.
It is possible for a document to be both well-formed and invalid.

24

CHAPTER 1

XML, HTML, and XHTML
The terms XML, HTML, and XHTML sound similar, but they’re really quite different. XML and HTML
are not competing languages. They complement each other as technologies for managing and display-
ing online information. XML doesn’t aim to replace HTML as the language for web pages. XHTML is
a hybrid of the two languages, with more robust construction rules than HTML.

Understanding HTML
HTML was designed as a tool for sharing information online in web pages. It defines a set of tags that
describe structure and web site content. HTML has been around for a long time. When it was first
created, HTML didn’t have very robust construction rules. In fact, the rules for working with HTML are
a little inconsistent. Some tags, such as , must be closed; others, like and , do
not need to be closed.

Because of these inconsistencies, it is possible to include major errors in an HTML document and still
have the page display correctly in a web browser. For example, in many browsers, you can include two

 tags, and the page will still load. You can also forget to include a closing tag, and
the table will still be rendered in many browsers.

The HTML language includes formatting instructions along with the information. There is no separa-
tion of the presentation from the structure and content in a document.

HTML is supposed to be a standard, but in the past, it often worked differently across web brows-
ers. Most web developers knew about the problem, and they created different web sites so that they
appeared the same way in Internet Explorer, Opera, Firefox, and Netscape for both PCs and Macs.

Like XML, HTML comes from SGML. Unlike XML, HTML is not extensible. You’re stuck with a standard
set of tags that you can’t change or extend in any way.

How is XML different from HTML?
Unlike HTML, XML deals only with content. XML describes the structure of information, without con-
cerning itself with the appearance of that information.

Using XML, you can create any element to describe the structure of your data. An XML document can
show relationships in your data, just as a database can. This just isn’t possible in an HTML document, as
the HTML tags don’t imply any data relationships. They simply deal with structure and formatting.

XML documents don’t deal with the display of information. If you need to change the way an XML
document appears, you can change the appearance by using CSS or Extensible Stylesheet Language
(XSL). XSL transformations can also reorganize, sort, or filter XML content. You can even use them to
create XHTML from an XML document, or to sort or filter a list of XML elements.

XML content is probably easier to understand than HTML content. The names of tags normally describe
the data they mark up. In the sample file, tag names such as and
describe exactly what data each element contains.

25

INTRODUCTION TO XML

You can use an XML structure to display information directly in a web page. However, it’s more likely
that you’ll use the XML document behind the scenes as a data source. It can provide the content for
a web application or a SWF movie.

Compared with HTML, XML is much stricter when it comes to constructing markup. There are rules
about how to write tags, and you’ve seen that all XML documents must be well-formed before they
can be processed.

A DTD or XML schema can also provide extra rules for the way that elements are used. These docu-
ments determine whether XML content is valid according to the rules of the vocabulary. The rules for
construction can include the legal names for tags and attributes, whether they’re required or optional,
as well as the number of times that each element must appear. In addition, schemas specify what data
type must be used for each element and attribute.

Where does XHTML fit in?
XHTML evolved so that the useful features of XML could be applied to HTML. The XHTML specification
became a recommendation in 2000 and was revised in 2002 (see).

The W3C says that XML reformulated HTML into XHTML. XHTML documents have much stricter con-
struction rules and are generally more robust than their HTML counterparts.

The HTML specification provides a list of legal elements and attributes within XHTML. XML governs
the way that the elements are used in documents. Together, they merge to form XHTML. One example
of this merging is that the HTML tag must be rewritten as or . In XHTML, web
designers can’t use a single tag to create a paragraph break, as is permissible in HTML.

Another difference between HTML and XHTML is that you must write attribute values in full. For
example, the following HTML is acceptable:

In XHTML, this must be written as follows:

The following list summarizes the main changes from HTML to XHTML:

You should include a DOCTYPE declaration specifying that the document is an XHTML
document.

You can optionally include an XML declaration.

You should include a namespace declaration in the opening element.

You must write all tags in lowercase.

 All elements must be closed.

 All attributes must be enclosed in quotation marks.

 All tags must be correctly nested.

The attribute should be used instead of .

 Attributes can’t be minimized.

26

CHAPTER 1

It’s no accident that some of these changes are the same as the rules for well-formed XML
documents.

The following listing shows the sample document rewritten as an XHTML document:

Notice that the file includes both an XML declaration and a DOCTYPE declaration, as well as
a namespace in the element. You can see the content in the file included with
this chapter’s resources.

You’re probably used to seeing information like this in web pages. A table displays the content and
lists each contact in a separate row. Figure 1-4 shows how this document appears in Firefox.

Figure 1-4. An XHTML file displayed in Firefox

27

INTRODUCTION TO XML

I’ve rewritten the content in XHTML so it conforms to the stricter rules for XML documents. However,
the way the document is constructed may still cause some problems. Each piece of information about
my contacts is stored in a separate cell within a table. The tags don’t give me any clue about what
the cell contains. I get a better idea when I open the page in a web browser.

Because this web page is essentially an XML document, I could use it as a data source for a Flash
or Flex project. However, in this example, the addresses appear inside generic tags that indi-
cate the document structure. The tags don’t specifically label each piece of data and indicate their
relationships. I can’t easily identify which column contains the names and which contains the phone
numbers. The XHTML document doesn’t inexorably link the name information with the first column
of the table. If I used Flash or Flex to extract the content, I would experience difficulties if the order
of the columns changed.

XHTML controls the way the information is structured on the page. I can make some minor visual
adjustments to the table using stylesheets, but I can’t completely transform the display. For example,
I can’t remove the table and create a vertical listing of all entries without completely rewriting the
XHTML source.

Each time I print the document, it will look the same. I can’t exclude information such as the address
column from my printout. I don’t have any way to filter or sort the information. I am not able to
extract a list of contacts in a specific area or sort into contact name order.

Compare this case with storing the information in an XML document. I can create my own tag names
and write a schema that describes how to use these tags. When I view the document in a web browser,
the tag names make it very clear what information they’re storing. I can apply an XSL transformation
to change the appearance of the document or to sort or filter the contents. I can display the docu-
ment as a table or as a bulleted list. I can sort the items into name order or by phone number. I can
even filter the contents so that only a subset of contacts appears.

XML isn’t a replacement for XHTML documents, but it certainly provides much more flexibility for
working with data. You’re likely to use XML documents differently from how you use XHTML docu-
ments. XML documents are a way to store structured data that may or may not end up in a web page.
You normally use XHTML only to display content in a web browser.

Understanding related recommendations
As you saw earlier in the chapter, XML works with other recommendations from the W3C that provide
additional functionality. Although there are many other recommendations, two areas are of particular
importance: DTDs/XML schemas and XSLT. Let’s take a brief look at both, starting with DTDs and XML
schemas.

Understanding DTDs and XML schemas
DTDs and schemas perform the same role: they describe the rules for a vocabulary of XML. They pro-
vide information about the element names, their attributes, how many times they can appear and in
what order, and what type of data they must contain.

28

CHAPTER 1

In addition to the two approaches discussed here, there are other ways to describe valid
XML documents. You can use alternative schema languages, such as Relax NG and
Schematron. However, these approaches are not recommendations from the W3C.

If you have either a DTD or an XML schema, you’re able to determine whether an XML document
is valid according to its construction rules. This process is called validation and is usually carried out
automatically by a software package.

An XML schema, sometimes called an XML Schema Definition (XSD) file, uses an XML format to
describe these rules. The W3C created this vocabulary of XML.

A DTD is an older method and uses a different method for writing validity rules. HTML and XHTML
files include a DTD declaration at the top of the file to indicate which version of the language they use.
This declaration allows a validator to determine whether the web page is valid.

The following code listing shows a simple XML schema that describes the rules for the XML vocabu-
lary used in the file. You can find this file saved as with the chapter
resources.

It’s easy to understand the rules for this language from this schema document. To start with, the
schema uses an XML structure and is a well-formed document.

The schema describes a element that is a element, meaning that it contains
other elements. The attribute value means that it can contain any number of
elements.

29

INTRODUCTION TO XML

The element contains three other elements— , , and —each of
which dictates that the contents of the element should be a string. The element also has
a required attribute called .

Of course, there is more to the language than this simple file, but it gives you a starting point for
understanding XML schemas.

Understanding XSL
Another important recommendation from the W3C is that for XSL. This recommendation covers two
areas: XSLT stylesheets and XSL-FO. An XSLT stylesheet transforms one XML document—the source
document—into a second type of document, called the transformed document. You might use an
XSLT stylesheet, for example, to convert an XML document into an XHTML document for display
in a web browser. XSL-FO stylesheets specify output for an XML document and might be used, for
example, to output the content as a styled PDF file.

An understanding of XSLT is important because it allows XML documents to be rewritten for different
purposes. It could allow XML content from one database to be transformed to a different structure,
suitable for import into another software package.

XSLT transformations take place because of the rules written into an XSLT stylesheet. Unlike CSS, an
XSLT stylesheet doesn’t deal with the formatting of content. Rather, it can change element names and
structures, perform simple calculations, and even sort and filter the content in the source document.

The following code listing shows an XSLT stylesheet that transforms the file into an
XHTML page, displaying the contacts in an unordered list. You can find the XSLT stylesheet saved as

 with the other chapter resources.

This stylesheet creates some simple HTML code and creates one element for each
element in the source XML document. Again, there’s a lot more to this recommendation than this
simple example shows, but it does give you an idea of how XSL works.

30

CHAPTER 1

Summary
In this chapter, you learned about XML and the contents of XML documents. You also learned about
the differences between XML, HTML, and XHTML. You should now understand the advantages of
working with XML as a data source for your SWF applications.

The importance of XML cannot be overstated. It allows organizations and individuals to create their
own mechanisms for sharing information. At its most simple, XML provides a structured, text-based
alternative to a database. More complex uses of XML might involve data interactions between corpo-
rate systems and outside consumers of information. The most important thing to remember is that an
XML document can provide a data source for many different applications.

The widespread adoption of XML by major software companies such as Microsoft and Adobe ensure
its future. Most of the popular database packages provide XML support. If it’s not already there, you
can expect XML to be part of most software packages in the near future.

In the next chapter, we’ll look at some of the different ways to generate XML content for use in Flash
and Flex applications. You’ll see the role of server-side languages like PHP, ASP .NET, and ColdFusion
in creating content from databases. I’ll also demonstrate how you can create XML content from Office
2007 software packages.

33

Chapter 2

Before you can start working with XML content in Flash and Flex applications, you’ll
need to create the XML documents that you want to use. These can be stand-alone
physical XML files or content from a database. Remember that an XML document
may simply be a stream of information generated electronically.

The easiest way to create XML content is to save a text file with an extension.
You can also use a web server to create either a physical XML document or a stream
of XML information from a database. You can even generate the content from exist-
ing data in another software package such as Microsoft Office.

In this chapter, I’ll cover all of these possibilities. I’ll show you how to write your own
XML content by hand and demonstrate the use of an XML editor. I’ll also explain
how to automate the process of creating XML documents by using a web server,
some server-side processing, and a database. We’ll do this with ASP .NET, PHP, and
ColdFusion. I’ll finish by giving you an overview of generating content from Microsoft
Office 2007.

Each of the XML documents that you create for your SWF applications is likely to
have unique content and to use a different structure. These documents may use an
existing vocabulary of XML, or you may decide on your own tag names. The only
thing that your XML documents will have in common is the rules that you use to cre-
ate them. At the very minimum, all XML documents must be well-formed, a concept
covered in the first chapter of this book.

GENERATING XML CONTENT

34

CHAPTER 2

You can download the resources used for this chapter from .

We’ll start by looking at how you can use a text editor to create physical XML files.

Authoring XML documents in a text editor
There are many different approaches that you can use to author physical XML files. For example,
you can use a text editor like Notepad or SimpleText. You can also use an HTML editor like Adobe
HomeSite or an XML editor such as Stylus Studio 2008 XML. You can even work with a web design tool
like Dreamweaver.

We’ll start with a look at how you might use a text editor to write a physical XML document.

Using text and HTML editors
You can use a text editor to create a physical XML file by writing every line in the software package
using your keyboard. Text editors provide no automation, so this process could take a long time if
you’re working with a large document.

If you’re working with an existing XML vocabulary, you’ll need to be familiar with the
language-construction rules so that you use the proper element names in the correct way. As you
learned in Chapter 1, an XML schema or a DTD describes these rules, and the process of checking is
called validation.

If you are creating your own XML elements to describe the data, you can just type the tag names and
structures as you need them. You’ll need to keep track of the structure and element names yourself.
When you’ve finished entering the content, you can then save the file with the extension .

Text editors are easy to use and either free or very cheap. Their main problem is that they don’t offer
any special functionality for XML content. Text editors don’t help you identify documents that are not
well-formed. They don’t provide error messages if tag names don’t match, if you’ve mixed up the cases
of your element names, or if you’ve nested elements incorrectly. Many text editors don’t automatically
add code-coloring to the elements in your document so you can visually check your markup.

In addition, text editors don’t include XML-specific tools. So, if you’re using an existing XML vocabu-
lary, you can’t automatically check your XML document against a DTD or XML schema to make sure
that it is valid according to the rules of that vocabulary. A text editor can’t apply an XSLT stylesheet
transformation to change the output of an XML document. In fact, you may not find any errors in
your XML documents until you first try to work with the document in another application, and that’s
usually too late!

Flex Builder is an example of a text editor that allows you to work with XML files. You can use it to
create and edit an XML document. However, unlike when you’re working with MXML documents,
Flex Builder doesn’t add coloring of tags in standard XML documents. Also, it also doesn’t include
XML-specific tools other than those specifically designed for working with MXML.

As an alternative, you can use an HTML editor like Adobe HomeSite (
) or AceHTML () to

create XML documents. One advantage of these software packages over text editors is that they can

34

35

GENERATING XML CONTENT

automate the process a little. They add coloring to opening and closing tags to make it easier to read
your content. Some also add the XML declaration automatically. HTML editors often come with exten-
sions for working specifically with XML documents. These might add the correct declarations to the
file and auto-complete your tag names. As with a text editor, you’ll still need to type in most of your
content line by line. Most HTML editors don’t include tools to validate content and to apply transfor-
mations. You can expect that functionality only from an XML editor.

Using XML editors
An XML editor is a software program designed to work specifically with XML documents. You normally
use an XML editor to enter your XML content manually, similar to the way that you use a text or HTML
editor. Most XML editors include tools that auto-complete tags, check for well-formedness, validate
XML documents, and apply XSLT transformations. In addition to creating XML documents, you can
use XML editors to create XSLT stylesheets, DTDs, and XML schemas. You’re not limited to working
with only XML-structured content. It isn’t mandatory to use an XML editor when creating XML docu-
ments, but it’s likely to save you time, especially if you work with long documents.

XML editors include both free and “for purchase” software packages. If you plan on spending time
creating physical XML documents by hand, I recommend that you invest the time to learn more about
an XML editor.

Common XML editors include the following:

Stylus Studio 2008 XML ()

Altova XMLSpy 2008 ()

XMLBlueprint XML Editor ()

<oXygen/> ()

Microsoft XML Notepad ()

XMLEditPro (freeware) ()

XMLFox (freeware) ()

To give you an idea of the advantages of using an XML editor, I’ll show you how Stylus Studio 2008
XML works.

Using Stylus Studio 2008 XML
Stylus Studio 2008 XML is a full-featured XML editor that you can try before buying. It allows you to
create and edit XML, XSLT, and XML schema documents. It can check that a document is well-formed,
validate an XML document against an XML schema or DTD, and apply an XSLT transformation.

In this section, we’ll look at some of the features of Stylus Studio 2008 XML as an illustration of what’s
possible with an XML editor. If you want to follow along, download it and install it on your computer.
It’s a PC-based tool, and your PC will need to have the Java Virtual Machine installed. You can down-
load a seven-day trial version of the software. Those of you working on a Macintosh will need to get
hold of a PC if you want to try out the features shown here.

Figure 2-1 shows the Stylus Studio 2008 XML window. If you’ve worked with Flex Builder, you’ll find
parts of the layout familiar. On the left side of the window, you can see a list of all projects. Projects

35

36

CHAPTER 2

allow you to work with a set of related files, and they are really an organizational tool. Stylus Studio
2008 XML includes an project containing many different types of sample documents.

Figure 2-1. The Stylus Studio 2008 XML window

The right side of the window contains the File Explorer, which allows you to locate files on your com-
puter or by FTP. You can drag files from the File Explorer on the right to a project on the left side of
the window, or you can double-click to open a file that isn’t part of a project.

The middle of the screen contains any documents that are open. In Figure 2-1, you can see the
 file. We used this file in Chapter 1, and you can find it with the Chapter 2 resource files.

Notice that Stylus Studio 2008 XML automatically adds coloring to the content to make it easier to
view the elements and attributes in the document. You can collapse and expand elements by clicking
the minus and plus signs to the left of the document.

Figure 2-2. Options available
when creating a new document
with Stylus Studio 2008 XML

When you create a new document, Stylus Studio 2008 XML allows
you to choose from a range of different document types. You can
create a standard XML document, an XML schema or DTD, or even
a stylesheet, as shown in Figure 2-2.

If you choose to create a standard XML document containing data,
the software automatically adds the following XML declaration at
the top of the file:

37

GENERATING XML CONTENT

You can assign an XML schema, DTD, or XSLT stylesheet to the document through the XML menu.
Stylus Studio 2008 XML will then add the relevant directives to the file.

You can use Stylus Studio 2008 XML like a text editor in Text view, which you can see in Figure 2-1. In
Tree view, it shows the document structures graphically. You can see the file displayed
in Tree view in Figure 2-3. Notice that I’ve expanded all of the elements in the file.

Figure 2-3. The address.xml document in Tree view

Tree view removes the markup from the document and displays the content in a hierarchy of tags,
showing the values on the right of the screen. This layout makes it easy to determine the document
structure. You can collapse and expand each area with the plus and minus signs to the left.

If you open an XML document that has an associated XML schema or DTD, you’ll be able to see the details
in Schema view. I’ve done this with the document , as shown in Figure 2-4. This file
contains the same markup as in the file but includes a reference to the

 file. You can find both files with your resources for this chapter.

Figure 2-4. The addressSchema.xml document in Schema view

38

CHAPTER 2

In Figure 2-4, you can see the details of the associated XML schema in Schema view. The figure shows
the details of the and complex elements, as well as the simple elements

, , and . You can see the data types of the simple elements listed on the right
side of the view.

If you open an XML schema document in Stylus Studio 2008 XML, you’ll be able to view more detailed
information about the schema. The software generates a diagram of the element structure and ele-
ment properties. Figure 2-5 shows the file in Stylus Studio 2008 XML. You can
see that I’ve selected the element from the schema. The diagram highlights this element and
displays the properties for the element at the bottom left of the window. The Properties area shows
the type of element selected, as well as details about how many times the element occurs and if it is
nullable. In this case, we are viewing a element that can occur exactly once and cannot have
a null value.

Figure 2-5. Viewing an XML schema in Stylus Studio 2008 XML

Another useful feature in most XML editors is auto-completion of tags. As you enter elements in an
XML document, you’ll notice that Stylus Studio 2008 XML completes the closing tags for you. After
you type the characters , the software inserts the correct closing tag. Not only does this save you
some typing, but it also ensures that the file is well-formed.

Stylus Studio 2008 XML also helps with tag hints as you make modifications to the document content,
as shown in Figure 2-6.

39

GENERATING XML CONTENT

Other important features of a good XML editor are these
abilities:

Checking that a file is well-formed

Validating an XML document against a schema
or DTD

Transforming an XML document using an XSLT
stylesheet

Stylus Studio 2008 XML offers all of these features when
you work with an XML document.

In Text view, you can check and validate an XML docu-
ment using buttons in the toolbar that appears above
the document. This toolbar contains two buttons: one
with a yellow check, which will review the XML for
well-formedness, and a second button with a green
check, which will validate the document against its XML
schema or DTD. You can also access these options from
the XML menu at the top of the screen.

You can check that a document is well-formed by clicking the button with the yellow check, or by
choosing XML Check well-formed. If your document is not well-formed, you’ll see an error mes-
sage that will help to pinpoint the problem. Figure 2-7 shows an error where the XML document is
missing the matching closing tag from the first element. You can see the error
highlighted at the bottom of the window. In addition to the error message, Stylus Studio 2008 XML
adds a pointer to the line containing the error.

Figure 2-7. Checking an XML document that is not well-formed

Figure 2-6. Stylus Studio 2008 XML helps
out with tag suggestions as you edit an XMlL

document.

40

CHAPTER 2

If you want to see this feature in action for yourself, open the file in Stylus Studio 2008
XML and change it to introduce a deliberate mistake. You could change the case of one of the clos-
ing tags, or you might remove the quotation marks from an attribute. When you check the file for
well-formedness, you’ll see an error message.

Stylus Studio 2008 XML can also check that an XML document is valid against its DTD or XML schema.
If you’re checking against a schema, you’ll need to associate the document with the schema first by
choosing XML Associate XML with Schema. Once you’ve created the association, you can test for
validity by clicking the button containing the green check on the center window toolbar or by choos-
ing XML Validate Document.

If the XML document is valid according to the XML schema, Stylus Studio 2008 XML will report this with
the message The XML document address.xml is valid in the output section at the bottom of the win-
dow. If the document is not valid, you’ll see an error message relating to the invalid content. I haven’t
provided an example here, but you might want to try out validity checking with the

 file. Try adding extra elements out of sequence or deleting one of the required elements.

Finally, if you’re going to transform your XML document with an XSLT stylesheet, you can use Stylus
Studio 2008 XML to create the stylesheet as well as to preview the transformation before it is applied.
You can associate an XML document with a stylesheet by choosing XML Associate XML With XSLT
Stylesheet. This action will add a stylesheet reference at the top of the XML document. You can see an
example saved in the resource file . This XML document references the XSLT
stylesheet , which is also included with the chapter resources. The transformation in
the file displays the contents as an XHTML list. Once you’ve added a stylesheet reference to your XML
document, choose XML Preview in Internet Explorer. Stylus Studio 2008 XML will apply the trans-
formation and provide a preview of the transformed output. You can see the transformation provided
by in Figure 2-8.

Figure 2-8. Previewing a transformed XML document

41

GENERATING XML CONTENT

The transformed content appears at the bottom left of the window. You can see the names of the
contacts displayed in an unordered XHTML list.

The preceding examples demonstrate some of the ways that an XML editor can help you to work with
XML documents. A full-featured product like Stylus Studio 2008 XML can save you time by checking,
validating, and transforming your documents with the click of a button.

If you don’t want to take the time to learn another software package and you already own Dreamweaver,
you might be surprised to know that it contains many of the XML editor features that you’ve just seen.

Working with Dreamweaver
You can also use a package like Adobe Dreamweaver as an XML editor. When you first install
Dreamweaver, it offers itself as the default editor for XML and XSLT files. If you open one of these file
types in Dreamweaver, it will automatically appear in Code view. Dreamweaver will add tag coloring to
make it easier to work with the file.

Figure 2-9 shows how the resource file appears when opened in Dreamweaver. The Code
view provides the same coloring functionality as other HTML and XML editors. It also shows line num-
bers to the left of the window.

Figure 2-9. Viewing an XML document in Dreamweaver

As with other types of Dreamweaver files, you can preview an open XML file in a web browser. If you
have added a reference to an XSLT stylesheet, previewing in a browser will apply a transformation to
the XML document. You can see the effect in Figure 2-10 as Dreamweaver previews the
file in Firefox. This XML document doesn’t have an associated XSLT stylesheet.

You can also validate an XML document in Dreamweaver using the command File Validate As
XML. If you don’t have a referenced schema, Dreamweaver will check that the file is well-formed
instead. If the file contains errors, Dreamweaver will report them, as shown in Figure 2-11. This
example shows the output where the file contains more than one ele-
ment. I’ve highlighted the error in the screenshot. If you own Dreamweaver, you might want to try
this for yourself.

42

CHAPTER 2

Figure 2-10. Previewing the XML document in Firefox using Dreamweaver

Figure 2-11. Validating an XML document in Dreamweaver

43

GENERATING XML CONTENT

If you already use Dreamweaver for your web development work, this software package might be
a good alternative to an XML editor when it comes to working with XML. You won’t need to spend
extra time or money on a new software package.

Instead of creating an XML document by hand in an XML editor, you might want to use a more auto-
mated approach and generate content from a database.

Generating XML content from a database
Databases are similar to XML documents in that they store structured information. This makes a data-
base an ideal source for generating XML content. While it’s possible to query a database and return
records in other ways, generating content in XML format allows you to preserve the hierarchical struc-
ture and relationships in the document.

Using XML as an intermediary is a good idea because of its flexibility. You can generate either physical
files or information streams, both in XML format. This means that it is easy to repurpose the database
content to suit different situations.

Working directly with records from a database means that you need to remain connected to the
database to access the content. Saving the records in a physical XML document allows you to use the
records while you are disconnected, perhaps on a handheld device or within a SWF movie running
from a CD or DVD. You can use the same content to populate a web application using an XML infor-
mation stream from the database.

So how do you go about creating an XML document from a database?

Using a web server to generate XML content
You need to use a web server and some server-side code in order to convert records from a data-
base into XML format. You’ll need to write web pages that convert to XML format using a server-side
language like ASP .NET, PHP, or ColdFusion. The server-side file will query the database, receive the
records, and generate the XML structure. It will either return a stream of XML-formatted information
or save a physical XML document.

To use this approach, you’ll need to have a web server capable of processing the server-side language.
This might be Internet Information Server (IIS), Apache, or ColdFusion. You’ll also need to use a data-
base like Access, MySQL, SQL Server, or Oracle to store the information.

In the following sections, I’ll show how you can generate XML content from a database using ASP .NET,
PHP, and ColdFusion. We’ll generate an XML stream similar in structure to the resource file

 from a database. My intention is to provide a walk-through, rather than a complete tutorial. The
aim here is not to make you an expert in each server-side language, but rather to give you a brief
introduction to show you how to generate XML in this manner. If you need to carry out this task on
a regular basis, you might want to further develop your skills in this area.

You can use any database to provide the content. To make the example simpler, I’ll use an Access
database for all three examples. It contains a single table called , made up of ,

, , and fields. This database is saved as with your resources
for this chapter.

44

CHAPTER 2

Some of the examples ahead contain concepts that are quite challenging for begin-
ners. If the examples are more than you need at this stage, feel free to skip ahead to
a later section.

We’ll start by looking at generating an XML information stream with an ASP .NET page written in
VB .NET.

Working with VB .NET
In this example, we’ll use a VB .NET page to generate an XML stream from the database. I’m going
to show you the declarative code for the page, but bear in mind that I’ve used a code-behind page
to keep my VB code separate from the interface. You can find the pages and

 with the other resource files for this chapter. The page
contains all of the code.

Before we get into the details of the code, if you’re going to work through this example, you’ll need
to compile the application so that the page will work correctly. You can do this in Visual Studio using
the command Build Build Solution or by publishing the web project with Build Publish [Project
Name]. You choose the second option once you’ve finalized the files and are ready to copy them to
their final location.

The page works with the page to generate an XML docu-
ment from the content in the Access database. The ASP .NET page consists of only a page declaration,
as the content is generated by the code-behind page. There are no other elements, as you don’t need
to generate XHTML content to display in a web browser.

The page declaration for the file appears here:

The page generates an XML stream containing the details of each contact
in the address book. Because the focus of this book is on Flash, Flex, and XML, I’ll show this entire
code-behind page and explain it afterward, rather than stepping through how to create it from scratch.
The following shows the content of the file:

45

GENERATING XML CONTENT

The page starts by referencing the relevant namespaces that you’ll need. The namespace
provides the XML functionality for the page and allows you to access the XML document-construction
methods that you’ll use.

The event creates the XML document so that the content exists when the page finishes
loading. The subroutine starts by declaring the variables needed. The first variable refers to the con-
nection string for the Access database. The connection string is saved in the file for the
application with the name . If you want to create your own example, you’ll need to specify
a connection string in that file.

The page creates a database connection object called , which uses the connection
string. It also creates a variable to store the SQL statement that you’ll need to extract the records from
the database table, called . In this case, you’re issuing a simple statement:

. The VB .NET page will iterate through the database records
using a , referenced with the object .

46

CHAPTER 2

The page uses an object to create and structure the XML document. It specifies that
the output will be an information stream, rather than a physical file, by using ,
and that it will use encoding. The page also sets the content type of the document to
so that it can generate the correct type of output.

The code sets the value of the variable and opens the database. It creates a command object
to issue the SQL statement to the database, and then executes the object to access the
returned content.

After the page makes the database call, it creates the XML document. It starts by setting the format of
the document to indented and writes the start of the XML document using the
method of the . The page writes the root element using the following line:

It passes the name of the element, , to this method.

The code loops through the , creating the relevant XML nodes from the database
records. The page uses the , , ,
and methods to generate the XML content, passing the relevant element names and
values.

After looping through the returned records, the subroutine writes the closing root element and uses
the method to write the content to the . It then calls the relevant
methods on the and database connection.

You could add some more stringent error handling to manage the database connection and respond
if no records are returned. I haven’t included this type of error handling here for brevity. Feel free to
alter the example if you wish.

You can view the contents of the page by right-clicking it and choosing View in
Browser. You can also press F5 to view the page if you have allowed debugging in the file,
or press Ctrl+F5 if you have disabled debugging.

This is an example of an XML document that doesn’t exist in a physical sense. It doesn’t involve saving
a physical file with an extension. Instead, the server-side file creates a stream of XML data that
can be consumed by a SWF file. If you view the file in a web browser through the web server, you’ll see
that it looks like a normal XML document, as shown in Figure 2-12.

This action is possible because the page sent its content type appropriately, using the following line:

If you try this example yourself, you’ll need to make sure that you use a page address starting with
 rather than the file path of the page. Using an address in this format will ensure

that the web server processes the file contents before sending the results of the processing to the
web browser.

47

GENERATING XML CONTENT

Figure 2-12. Viewing an XML stream generated by VB .NET in Internet Explorer

You can find the files discussed here with the other chapter resources.

Another popular server-side approach is the use of PHP, which we’ll look at in the next section.

Working with PHP
We’ll re-create the previous example using PHP to generate the XML content. Again, you would need
to use this page with the appropriate database connection code, which I haven’t provided. This exam-
ple appears in the resource file . The complete page follows, with the explanation
afterwards.

48

CHAPTER 2

The first line declares the content type for the document—in this case, . I’ve assumed that
the database connection code appears in a file called so the second line of the file
includes that file in the code. You’ll need to create this file yourself if you want to work through this
example.

The next line creates a new version 1.0 object with encoding. This is your XML
document. The file uses the and methods to create the structure for
the start of the XML document. The method requires the name of the element as
the first argument and has an optional second argument that indicates the content for the element. In
this case, the line specifies that the root element is called and doesn’t add any content.

The page declares a variable, , containing the statement to retrieve the appropriate
database records. It uses the same statement as in the previous example:

.

The page then queries the database, storing the results in . If the query returns records, the
page loops through them, retrieving the , , , and fields, and storing them
in variables. The code then creates the relevant XML elements using the method,
beginning with the element. It appends each new XML element to the correct parent ele-
ment after it is created. The element also has an attribute called , added by using the

 method, and passing the name and value for the attribute.

Finally, the page finishes by writing the XML document to the screen using . If you viewed
the page through a web browser, you would see the file structure shown in Figure 2-12.

As with the previous example, this page could include some error handling to deal with an empty
record set or a database error. However, the intent here is to show you how to generate simple XML
content, rather than to give you a lesson in writing robust PHP pages. You can find this example saved
as with the other chapter resources.

To finish this section, we’ll look at using ColdFusion.

49

GENERATING XML CONTENT

Working with ColdFusion
We’ll complete this example by using ColdFusion to generate the same XML content. Again, you
would need to use this page with the appropriate database connection code, and I’ve called it

 in the example.

This example appears in the page with your resources. As before, the explanation
follows the complete page listing.

The page starts with a root tag that tells ColdFusion how to process
the page. It contains two attributes: , which suppresses excess whitespace in the
document, and , which sets the page encoding. The remaining code for the page appears
between the opening and closing and tags.

The SQL statement appears between opening and closing tags. The opening
 tag includes a attribute and a attribute, which is set to the connection

. As with the other examples, you would need to set up the
database connection in order to make this file work correctly.

ColdFusion reads the content from the database fields using symbols around each field name. The
page creates an XML document containing the values from the query using the tag.
This tag creates a ColdFusion XML document object, and it has an attribute with a value of

. You’ll be able to use this name to generate the XML document once it is created.

The tags enclose the structure for the XML document. The code starts with the root element
. It uses a tag to add the results from the query. Each variable appears

inside the symbols within a element. Every contact appears inside a
element, which includes an attribute as well , , and child elements.

50

CHAPTER 2

The final step in the ColdFusion file is to output the variable. The page uses the
element to create the XML stream. If you ran this page through ColdFusion Server, you would see the
same output as in the previous two examples.

That’s it for our brief look at generating XML content from the server. The techniques that I’ve touched
on here are important. If these topics are new to you, it’s probably a good idea to research them fur-
ther and spend some time learning how to write the appropriate code.

Another approach for generating XML is to use a software package such as Microsoft Office 2007.

Generating XML from other software packages
Many other software packages are capable of exporting their content using an XML format. This func-
tionality allows for data exchange between unrelated applications. Recent versions of Microsoft Office
also provide this functionality. I’ll focus on the Microsoft Office applications in this section.

For Microsoft Office to be a source of XML content, you need the right version of the software suite
on either a PC or a Macintosh. Office 2003 and later versions provide support for PCs, while Office
2008 for Macintosh provides the same features. You can generate XML documents using Microsoft
Word or Excel, and for PC users, Microsoft Access.

Using Microsoft Office to generate XML documents for SWF applications can be very useful. Clients
can maintain their own application content using familiar tools like Word and Excel. By providing them
with some simple instructions and an XML schema, you can leave them to get on with creating and
modifying the content for their applications. They don’t need to learn to use an XML editor or a pack-
age like Dreamweaver.

Excel 2007, Word 2007, and PowerPoint 2007 for PC all use XML as their default file format, called the
Office Open XML format. These packages in Microsoft Office 2008 for Macintosh use the same format.
If you understood these XML vocabularies, you could write an entire Office document in a text editor,
although once you see the languages, you’ll realize that this approach would be very cumbersome!

Using the Office Open XML format means that you can both generate and open XML content in these
software packages. The only requirement is that the XML documents you work with are well-formed.
Office 2003 and above for PC and Office 2008 for Macintosh support the use of XML schemas and
XSLT transformations.

Because I’m a PC user, I’ll give you a brief look at how you can generate XML from Microsoft Office
2007, but the process should be similar on a Macintosh. I’m not going to go through every XML fea-
ture in each package, but I will give you an overview of some processes that might be useful.

Getting started with XML in Excel 2007 and Word 2007
You’ll find the XML features in only the stand-alone version of each package or in the Professional
version of Microsoft Office 2007. By default, the XML options aren’t displayed in Excel and Word, so
you’ll need to display them in the Ribbon of both packages before you start work. You can do this by
clicking the Microsoft Office button and selecting either Word Options or Excel Options.

51

GENERATING XML CONTENT

Figure 2-13 shows how you would change this setting in Microsoft Office Word 2007. In the Popular
category of the Word Options dialog box, check the Show Developer tab in the Ribbon option. Once
you select this option, Word 2007 adds the Developer tab, which contains the XML options shown in
Figure 2-14.

Figure 2-13. Showing the Developer tab in Microsoft Office Word 2007

You can display the XML Structure pane on the right side of the win-
dow by clicking the Structure button. This pane provides additional XML
functionality.

You can work with an XML schema using the Schema button or an XSLT
transformation with the Transformation button. The Transformation but-
ton is grayed out in Figure 2-14 because no transformation has been
added to the file. Finally, you can add an expansion pack by clicking the
Expansion Packs button. An expansion pack is a collection of files that
make up an XML solution.

Generating XML from Word 2007
The stand-alone and Professional versions of Word 2007 provide tools that you can use to work
with XML documents. There are two ways to use these editions to generate XML documents from
Word 2007:

Create a WordML document, which uses Microsoft’s own word processing XML vocabulary.

Generate your own XML structure by adding an XML schema or XSLT stylesheet into the mix.

Creating an XML document in Word using Save As
The simplest way to generate an XML document from Word 2007 is to use the File Save As com-
mand, select the Other Formats option, and choose Word XML Document as the file type. This option
creates a WordML document.

WordML is Microsoft’s XML vocabulary for describing Word documents. It describes attributes about
the document, the content in the document, and the formatting applied to elements of the docu-
ment. Figure 2-15 shows how to save a document in this format. In this case, the file will be
saved as a Word XML document named .

Figure 2-14. The XML
options available in the

Developer tab of Micro-
soft Office Word 2007

52

CHAPTER 2

Figure 2-15. Saving a file as a Word XML document

The file contains a news item with the following three lines:

I’ve included this file with the resources for this chapter if you want to have a look.

Saving the document using the Word XML Document format generates a WordML representation
of this document. You can see the XML generated by Word in the resource file . You will
need to open this file in Notepad or an XML editor to see the content that Word generates. Don’t
double-click, as that will just open the file in Word 2007. This behavior is because of the processing
instruction on the second line of the XML document.

The generated XML file contains information about the document and the formatting settings, as well
as the content itself. That’s why the document is so long, especially when compared with the length
of the original document.

53

GENERATING XML CONTENT

The following listing shows the first few lines of the generated document:

This listing contains only a small amount of the generated content from the file. The second
line is a processing instruction that tells the document to open in Word. If you open the document
in Notepad and scroll down, you’ll see that there are many lines before you get to the actual content
inside the original document. Feel free to repeat the test yourself to see the enormous amount of
WordML generated by Word.

If you knew how to write WordML, you could create a document in an XML editor and open it in Word.
You could also edit the WordML from the Word document in your XML editor as an alternative way to
make changes to the document. However, both of these processes are likely to be cumbersome.

The size of file generated is restrictive and would be unwieldy if used in a SWF application. It would
be difficult, even with the XML changes introduced in ActionScript 3.0, to navigate through the docu-
ment to locate the content. The SWF application would need to load a lot of extra content to access
the original three lines.

An alternative for SWF applications is to specify your own XML structure by including an XML schema.
This approach allows you to streamline the generated content.

Creating XML content in Word by using a schema
Attaching a schema to the Word document will allow you to specify your own structure, which means
you can reduce the number of XML elements created from the document. You can use the schema to
ensure that the generated document is valid according to your language rules. You could also trans-
form the content with an XSLT stylesheet.

In this section, I’ll briefly show you how to generate your own XML content by using an XML schema.
You need to follow these steps to create an XML document in Word 2007 using a schema:

1. Create a schema for the XML document.

2. Create a Word 2007 document that uses the schema.

3. Mark up the Word document with the XML elements from the schema.

4. Save the data only from the document in XML format.

The result will be a valid XML document with fewer lines compared with its WordML relative.

I’ll walk you through these steps with a simple example. This section will provide an overview; it isn’t
intended as a tutorial. You can find all of the files that I refer to with the resources for this chapter.

54

CHAPTER 2

To start, I used an XML schema to describe the XML structure for the news item file you saw earlier.
An XML schema provides information about an XML vocabulary. It lists the elements that are valid in
an XML document, their type, and any rules relating to their construction.

The file contains the complete schema. I’m not going to explain how to write a schema
from scratch here, as that’s beyond the scope of the book, but the content follows:

In this schema, the root element contains the elements , , and
. There can be only one of each of these elements, and they must be included in the

order specified. The elements all contain data.

I’ve created a simple document called to demonstrate the process. If you have
Word 2007, you can open the file to see how it looks. The process is easiest if you click the Structure
button in the XML group to display the XML Structure pane.

The process of adding a schema is straightforward. You start by choosing the Schema option from the
Developer tab. Click the Add Schema button, as shown in Figure 2-16. This screenshot shows that the
schema is already attached.

Figure 2-16. Attaching a schema to a Word
2007 document

55

GENERATING XML CONTENT

To attach the schema, you need to navigate to the correct file. Enter a URI or namespace for the
schema and an alias when prompted. The URI doesn’t need to reference a file or URL; it just needs
to be a unique value in the application. The alias is a shorthand name that Word uses to refer to the
schema. I entered the value for both settings. Click OK to close the dialog box

To use the schema to generate simplified XML content, the application needs to know that it should
output only the data from the file, not the XML tags. After you’ve attached the schema, set this
option by clicking the XML Options button. Check the Save data only check box, as shown in
Figure 2-17. Selecting this option means that the formatting and meta-information will be excluded
from the output.

Figure 2-17. XML options in the Word 2007 document

You need to apply the XML elements for the schema to the Word document. You do this by selecting
the text in the document and dragging an element from the schema to the selection. Start by high-
lighting all of the text and drag the root element, . Then select the date and drag the
element to the selection. Repeat the process for and . Figure 2-18 shows how
the document appears after applying the elements.

Figure 2-18. The document marked up with XML tags in Word 2007

This document maps to the attached XML schema. Figure 2-18 shows the XML elements from the
schema applied to the content in the file. They are the purple tags that surround the content. If you
can’t see these tags, click the Structure button in the XML group of the Developer tab to display the
XML Structure pane. Make sure that the Show XML tags option in the document is checked.

You can generate XML consistent with the schema by saving in Word 2003 XML format. Choose the
File Save As command, select the Other Formats option, and choose Word 2003 XML.

56

CHAPTER 2

The generated XML document is saved as with this chapter’s resources. It contains
the following XML structure:

Compare the structure and content of this XML document with the one that didn’t use a schema,
. You’ll see that the tag names in this document are more descriptive, and it is sig-

nificantly shorter than the equivalent WordML document. This document is more suitable for use in
a SWF application than its WordML cousin.

Word 2007 is useful for generating XML content for nonrepeating items such as the document you
saw in the example. If you have repeating or list-based items, you might consider generating XML
content from Microsoft Office Excel 2007 instead.

Generating XML from Excel 2007
Again, I’ll give you a brief overview of how to create XML content from an Excel spreadsheet, rather
than working through an exercise step by step. First, though, you must understand the type of XML
that Excel will generate.

Excel document structures are very rigid. They always use a grid made up of rows and columns. This
means that the XML content generated from Excel must match this layout. If you generate XML con-
tent from Word, it’s possible to include elements within other elements or text. For example, you
could display the following mixed XML elements using Word:

In Excel, the smallest unit of data that you can work with is a cell. Cells can’t contain other cells,
so you can’t generate mixed elements in the same way that you can in Word. Any XML document
generated from Excel will include a grid-like data structure so it is suitable for generating list-based
XML content.

Generating an XML document in Excel using Save As
As with Word, the easiest way to create an XML document from Excel is to save it using the Spreadsheet
2003 XML file type. Saving as this type of document creates output written in SpreadsheetML,
Microsoft’s spreadsheet XML vocabulary.

To illustrate this process, I’ve included the file with your resources for this chapter.
This file is shown in Figure 2-19.

57

GENERATING XML CONTENT

Figure 2-19. A simple Excel 2007 document

This document is a representation of the content in the file that you saw earlier. It con-
tains two addresses. Use the Save As command and select the Excel Spreadsheet 2003 XML file type to
generate SpreadsheetML to describe the document.

You can see the output from this process saved in the resource file . You’ll notice that,
as with Word 2007, this simple Excel 2007 document generates a large SpreadsheetML document. The
following code block shows the few first lines of the generated XML document:

As you can see, because the code describes attributes of the file as well as the structure of the docu-
ment, the resulting XML is very long and complicated. As with Word 2007, you can simplify this pro-
cess by using an XML schema to structure the output.

Creating XML content in Excel using a schema
If you wish to specify your own format for the XML generated by the Excel 2007 spreadsheet, you’ll
need to attach an XML schema to the document. Excel converts the schema to a document map that
describes the structure of XML documents that can be exported from the workbook. As with Word,
you must specify which spreadsheet data maps to each element in the document map.

Excel works with data in a grid, so that gives a clue about the best type of XML data to import
and export with Excel. You will experience difficulty if you try to work with complex content with
mixed elements—those containing both elements and text. Instead, expect to work with and generate
grid-like XML documents.

The example in this section uses the following XML schema. This schema describes the phone book
XML document you saw in Chapter 1, and it is saved in the file with the other
chapter resources.

58

CHAPTER 2

The file already has this XML schema applied. This was done through
the XML group in the Developer tab. If you can’t see this tab, you’ll need to display it using the instruc-
tions provided earlier in this chapter.

To view the XML map, click the Source button in the Developer tab to display the XML Source pane.
I added the schema by clicking the XML Maps button at the bottom of the XML Source pane and
navigating to the XML schema document.

The Excel 2007 file is included with the
other chapter resources. Figure 2-20 shows how the document map for
this file appears in the XML Source pane.

I applied the elements from the document map to the data in the Excel
workbook. I selected all of the data and dragged the ele-
ment to the selection to set the root node for the file. As the column
headings in this workbook are the same as the element names in the
XML schema, Excel automatically associates each element in the docu-
ment map with the correct columns. If this were not the case, I would
need to select each column and match it with the relevant element by
dragging and dropping. Figure 2-21 shows how the worksheet appears
with the document map applied.

Figure 2-20. The docu-
ment map in the XML
Source pane

59

GENERATING XML CONTENT

Figure 2-21. The Excel document with document
map applied

You can export simplified XML from any worksheet where the content has been mapped according to
an attached document map. Click the Export button in the XML group of the Developer tab to gener-
ate the new XML document.

I’ve exported XML content from , and you can see the results in the
resource file . The contents of this file follow:

The file looks almost identical to the XML document that you saw earlier in the chapter. The only dif-
ference is the missing attribute from the element. As with Word 2007, applying a schema
to the Excel document greatly simplifies the XML content exported.

The final Office package that I will cover in this section is Microsoft Access 2007 for PC.

Creating XML content with Access 2007
Access 2007 works a little differently when it comes to XML compared with the other Office applica-
tions. Getting data out of Access and into an XML document is easy—you just export it in XML format.
The XML documents that are generated come from the structure of the table or query exported. The
names of the fields in the table or query are used to name the elements in the resulting XML docu-
ment, so you do not need to attach a schema to simplify the content.

To export an entire table or query, right-click the object name and choose Export. Select the XML File
option. Figure 2-22 shows this process with the Access database .

60

CHAPTER 2

Figure 2-22. Exporting a table in Access 2007

You’ll be prompted to choose which files to export: the data (XML), a schema (XSD), and presentation
of the data (XSL). You can choose any one or all of these options.

Access 2007 generates an XML document based on the table or query structure. You can see an
example in the resource file, which follows. Try exporting the
object yourself to see this result.

61

GENERATING XML CONTENT

As you can see, these exported Access files don’t require a schema to be smaller than their Word
and Excel equivalents. The elements in the XML document take their names from the field names in
the table or query. Access replaces any spaces in field names with an underscore () character. If you
don’t want to use the default field names in the table, you can always write a query that creates more
user-friendly names.

The only thing added by Access is the root element. It contains a namespace reference
and an attribute called . This attribute represents a timestamp for the generation of the
XML document.

As you can see from the previous sections, each of the Office applications works with particular data
structures. Word 2007 works best with nonrepeating information, a bit like filling in a form to gener-
ate the XML elements. Excel 2007 best suits grid- or list-based data structures that don’t include mixed
elements. Access 2007 works with relational data, and you can either export an entire table or write
queries to specify which data to export.

You’ve seen several different ways to generate XML content for use in SWF applications. There’s one
important point to consider about this type of content: validation of the XML document

Validation and XML content in SWF applications
In this chapter, I’ve shown you different ways to generate XML content that you can use as a data
source in SWF applications. Provided that the document you create is well-formed, you’ll be able to
use the data it contains when you build SWF applications in Flash or Flex.

ActionScript uses an XML parser to process loaded XML content. It allows you to iterate through each
part of the document once loaded. The ActionScript XML parser will generate errors if it has to pro-
cess XML content that is not well-formed, but it will do this only at runtime.

The ActionScript processor is not a validating XML parser. When a SWF application loads an XML
document that references an XML schema or DTD, the processor is not able to determine whether the
XML document is valid according to that schema or DTD.

So, if you’re working with a predetermined XML vocabulary, you can’t rely on Flash or Flex to check
that the content is valid according to its DTD or XML schema. Instead, you’ll need to use other tools or
mechanisms to make ensure that the XML content is valid before loading it into the SWF application.

62

CHAPTER 2

Summary
This chapter described several ways to create XML content for use in SWF applications. We started
by looking at some tools that you can use to write an XML document manually. The most useful class
of tools is XML editors, as they can automate several processes. They can check that documents are
well-formed, validate them according to an XML schema or DTD, and apply an XLST transformation.
As an example, I demonstrated this functionality in Stylus Studio 2008 XML.

I also showed some basic approaches for generating XML content from a database with server-side
code. The chapter includes simple examples using VB .NET, PHP, and ColdFusion. It doesn’t provide
a comprehensive guide, so you may want to research the topic more thoroughly if you’re going to use
one of these approaches.

We finished by looking at how you might generate XML content from Office 2007 documents. I didn’t
cover every method possible, but you saw the different types of content that you can generate from
these software packages. You saw that adding a schema to either Word 2007 or Excel 2007 allows you
to control the structure of the file generated.

The next chapter looks at the new ActionScript 3.0 approaches to working with XML content. I’ll cover
the new E4X ActionScript 3.0 classes, and you’ll see examples of how to work with each class in both
Flash and Flex.

65

Chapter 3

So far in this book, you’ve been introduced to XML and seen some different ways
to generate XML content for SWF applications. In this chapter, you’ll learn about the
role of XML in ActionScript 3.0. If you have been coding with ActionScript 2.0, be
prepared to forget any previous experience you have with ActionScript and XML,
because things have changed radically.

ActionScript 3.0 completely reworks the class and also introduces a new
class. Both represent a leap forward for developers, as the changes will speed up the
development process greatly. The new functionality is based on ECMAScript stan-
dards and is referred to as E4X.

Another major change is that XML is now a native data type. This means that you can
declare and explicitly assign content to objects, in much the same way that you
would with strings and numeric types.

You’ll learn about these new ActionScript 3.0 features in this chapter. You can down-
load the resources for this chapter from .

ACTIONSCRIPT 3.0 AND XML

66

CHAPTER 3

Differences between ActionScript 2.0 and 3.0
If you’ve worked with earlier versions of ActionScript, you’ll be familiar with the ActionScript 2.0
class. Unfortunately, you’ll need to forget what you’ve previously learned, because ActionScript 3.0
changes things quite significantly. The good news is that the new approaches make life much easier
for developers.

ActionScript 3.0 includes completely new XML functionality based on the E4X specification, ECMA-357.
E4X is an extension to ECMAScript (JavaScript) specifically targeted at working with XML documents.
It is a standard, managed by an international body called the European Computer Manufacturers
Association (ECMA), which allows an XML document to be defined as a JavaScript object or, in our
case, an ActionScript object.

E4X is implemented in a number of different areas, including a full implementation within ActionScript
3.0. Unfortunately, there is only limited support for E4X in JavaScript within current web browsers.

In ActionScript 3.0, you can target content in an XML object by using methods of the class to write
E4X expressions. You can also use some shorthand expressions that are similar to XPath, and I’ll cover
those in the next chapter.

E4X expressions allow you to target the content in an XML object by writing paths that refer to node
and attribute names. If you’ve ever had to write paths or loop through XML content using ActionScript
2.0, you’ll welcome this functionality with open arms!

The introduction of E4X to ActionScript 3.0 has the following advantages:

ActionScript 3.0 now uses a standardized approach.

E4X usually produces far less code to parse XML content compared with ActionScript 2.0.

E4X expressions are simple and are generally easier to understand than the equivalent
ActionScript 2.0 expressions.

E4X is easy to learn, especially for developers with experience in XPath.

You can find out more about E4X by reading the specification at
tm. If you want to know more about the XPath specifica-

tion, you can find it at , although it’s not essential for using E4X in Flash
and Flex.

E4X introduces several new classes to ActionScript 3.0, as follows:

: This class works with objects.

: This class works with an ordered collection of XML content and may involve more
than one object.

: This class is a wrapper collection class for the class.

: This class represents the qualified name of XML elements and attributes.

: This class works with namespaces.

66

67

ACTIONSCRIPT 3.0 AND XML

The old ActionScript 2.0 class has been renamed to the class
for support of legacy applications. Using this class for new SWF applications is not
recommended. is also available as a legacy class.

We’ll take a closer look at these new classes in this chapter. Before we start though, let’s look at XML
as a native data type in ActionScript 3.0.

XML as an ActionScript data type
ActionScript 3.0 includes and as new complex data types. This means that you can
write XML inline within ActionScript code. If you are working with Flex, you can also use a tag-based
approach to create literal XML content.

Writing XML inline within ActionScript
If you’ve worked with ActionScript 2.0, you’re probably familiar with passing a string to the XML con-
structor to create an object, as shown here:

While you can still create XML content in this way, ActionScript 3.0 allows you to write XML inline
within ActionScript code using a literal value, as shown here:

In this case, I’ve created an object with as the root element. The object contains
a single element. Notice that I don’t need to use quotes around the XML content, and it
can be split onto different lines. The object has a data type of , not .

The only requirement for creating an object in this way is that the content must be well-formed.
This requirement also applies if you’re passing a string to the XML constructor method. (If you’re not
sure what well-formed means, refer to Chapter 1.)

You can write a path to locate the root element in an object by using the object name. In this
example, I can use the name to reference the root of the object, . The
root node is the starting point for most of the XML methods covered in this chapter.

You normally create an object by applying an E4X expression to an object. You’ll find out
more about these expressions later in this chapter and in the next chapter.

67

68

CHAPTER 3

Writing XML with the XML tag in Flex
You can use the tag in Flex to work with literal XML content in an XML data model. This tag
compiles the data into an object, which you can work with using E4X expressions.

You can either add the content directly to the tag or specify an external document source.
The following block shows how to declare the content of an element explicitly:

This example is equivalent to the ActionScript variable created in the previous section. As with the
ActionScript 3.0 equivalent, the content inside an tag must be well-formed XML.

One advantage of using the tag is that you can specify an external document as the content
using the attribute, as shown here:

This element loads content from the file in the folder of the Flex
project.

Be careful with this approach though, as the tag compiles the data into the SWF file, rather
than loading it at runtime. You can’t modify the external XML document and expect the application to
update the content automatically. If you need that functionality, you must load the content using one
of the methods shown in Chapter 5. For simplicity, in this chapter we’ll keep working with static XML
content stored in the SWF application.

Next, let’s look at the new ActionScript 3.0 E4X classes.

Overview of the new ActionScript 3.0 classes
Before we explore the new classes in detail, it’s useful to understand the general purpose of each one, as
well as the way the classes interact with each other. I’ll provide a brief summary of the new classes here.

The ActionScript 3.0 class
The ActionScript 3.0 class allows you to work with XML content. As mentioned earlier, this class
implements the E4X standard for working with XML documents. In the previous section, you saw that
it was possible to declare an object and assign a value using ActionScript.

An object contains a single root node with some optional child nodes. An object is a col-
lection of XML content or nodes. It doesn’t have a root node as a container for the other elements.

69

ACTIONSCRIPT 3.0 AND XML

The XMLList class
You can create an through various E4X expressions and methods of the class. For exam-
ple, you can use the method of an object to return a collection of all child nodes of
an element. You can also use an E4X expression to create a list of nodes matching certain criteria, with
the expression acting as a filter for the XML content.

The class represents an ordered collection of XML elements. Many of the class methods
that you’ll see shortly return an . One useful feature of an is that you can assign it as
a for Flex components.

The difference between and objects is that the object is a single object containing
any number of child nodes, whereas an is a collection of one or more objects. However, the
distinction blurs somewhat, because an object containing a single item is treated in the same
way as an object.

So how can you tell whether you’re working with an object or an object? If you call the
 method, the value will always be in the case of an object. An can have any

other value, although an class method returning an with a single element will also show
a value of .

The XMLListCollection class
If you’re working in Flex, it’s useful to assign the to an object and use
that as the basis for data binding. The provides additional methods for working
with the content, and the binding is monitored for changes. This isn’t the case if you bind an

.

You’ll usually use an object as the property for another com-
ponent. In addition to methods, it contains methods for sorting data, adding items, and
editing items.

The QName and Namespace classes
You’ll use the and classes when you work with XML content that falls within a spe-
cific namespace. Remember that namespaces associate XML elements with an owner, so that each
element name is unique within the XML document. You can create a object to associate an ele-
ment with a specific namespace or to identify the element uniquely with a string.

Now let’s look at the new classes in more detail, beginning with the class.

Working with the XML class
The class class allows you to work with XML documents. XML documents must have a single root
node and be well-formed before they can be parsed by either Flash or Flex.

You can either declare the XML content within your SWF application or load it from an external source.
You saw the first option earlier in this chapter. You’ll see how to load external content in Chapter 5.

70

CHAPTER 3

Each object can include any or all of the following node types, called node kinds:

An element

An attribute

A text node

A comment

A processing instruction

To understand the class a little better, let’s look at its properties and methods, and work through
some examples of how they might apply in both Flash and Flex.

Properties of the XML class
The class class has five static properties that determine how the XML content is treated. These
properties are listed in Table 3-1. Because they are static properties, they determine the overall set-
tings for objects in your SWF applications, rather than applying to a specific instance.

Table 3-1. Static properties of the XML class

Property Type Description Default value

Determines whether to ignore
comments when the source
XML content is parsed

Determines whether to ignore
processing instructions while
parsing the XML document

Determines whether to ignore
whitespace when parsing the
XML document

Determines the amount of
indentation, in spaces, when

 is set to

Determines whether whitespace
is preserved when the XML
document displays with either
the or
method

71

ACTIONSCRIPT 3.0 AND XML

We’ll look at the effect of these properties in an example using the following object:

We’ll work through examples in both Flash and Flex, starting with Flash.

Working with XML properties in Flash
Follow these steps in Flash:

1. Open Flash and create an object called . Assign the preceding XML content
to this object, as shown here:

2. The method of the class provides a string representation of the object.
Add the following lines below the object:

This example turns off the property so you can see unformatted XML
content.

3. Test the SWF file using the Ctrl/Cmd+Enter keyboard shortcut. Figure 3-1 shows the output
from this simple ActionScript code. As you can see, the content renders without indentation or
any spacing that would make it easier to read.

Figure 3-1. Tracing the XML object without comments or pretty printing

4. Modify the code as follows:

72

CHAPTER 3

You’ve turned on the setting and set an indent of four spaces. Figure 3-2
shows how this content appears in the Output panel. The output now uses pretty printing to lay
out the content. It includes four characters of spacing between indented lines because of the

 and property settings.

Figure 3-2. Tracing the XML object with pretty printing

You can find the file used for this example saved as with this chap-
ter’s resources.

Working with XML properties in Flex
You can re-create the preceding example in Flex by creating a project and application file, as follows:

1. Add the XML content to the application in an element:

2. Modify the element to add a attribute, as follows:

3. Add the following block:

73

ACTIONSCRIPT 3.0 AND XML

The script block imports a as that object is passed within the function.
It creates the function, which sets the static property to . As
with the previous example, it displays the XML content using .

4. Debug the application to see the output in the Console view, which will look similar to the
output shown in Figure 3-1.

5. Replace the line with the following code:

6. Debug the application again. This time, you’ll see the same effect as in Figure 3-2, with the XML
content formatted and easy to read.

You can find the MXML application saved in the resource file .

In addition to the static properties, the class also has a number of methods.

Methods of the XML class
You can access content within an object by using E4X expressions, as discussed in the next chapter,
or by using methods of the class. Many of these methods return an object. There are also
a number of methods that developers can use to create and modify XML content, which are covered
in Chapter 8.

The most common methods of the class can be divided into the following categories:

Methods that help to locate XML content

Methods that find out information about XML content

Methods that modify XML content

We’ll start by looking at methods for locating XML content.

Locating XML content
The class class includes many methods that allow you to parse an object to locate specific
information. This information is always treated as a data type, so you’ll need to cast any values
that should be treated as numbers or dates.

As I mentioned, there are two ways to access content from an object: use the class methods
or use E4X expressions as a kind of shorthand. In this chapter, we’ll focus on using XML methods, and
the shorthand E4X expressions are covered in Chapter 4. In most cases, you can use either approach
to locate values within your XML content. However, the following methods of the class don’t have
an equivalent E4X expression:

Locating the parent with the method

Using to access the collection of comments in the object

Using to access the collection of processing instructions

74

CHAPTER 3

Table 3-2 shows some of the most common methods that allow you to access content in an XML
document. These methods also apply to the class.

Table 3-2. Methods of the XML class that assist in locating XML content

Method Description

Returns the value of a specified attribute as an .
The attribute name can be a string or a object.

Returns a list of attribute values for a specified node as an
.

Returns the child nodes of a specified node matching the
supplied name.

Returns all children of the specified node as an .

Returns all comments within an object.

Returns all descendants of an object as an .

Lists the elements of an object as an . This method
ignores comments and processing instructions.

Returns the parent of the specified object as an .

Returns processing instructions.

Returns all text nodes.

Let’s look at examples of some of these methods.

Instructions for the code samples
The code samples for both Flash and Flex are identical, but you need to add the code at different
locations in the Flash and Flex files.

For the Flash examples, follow these steps:

1. Open up a new Flash document.

2. Add the contents of the document to an object called on an
Actions layer. Here are the first two lines, to get you started:

3. Add the ActionScript lines shown in the following examples below the declaration for the
 object.

75

ACTIONSCRIPT 3.0 AND XML

Follow these steps for the Flex Builder files:

1. Create a new project and application file using File New Flex Project.

2. Create an folder for the project and add the XML document .

3. Add an element and set this XML element as the source for the object, as
shown here:

4. Add the following event to the element:

5. Add the following block containing the function above the
object:

6. In the examples that follow, replace the content with the code
samples. Because you’ll be using statements, you’ll need to debug rather than run the
Flex application.

The complete Flex code follows:

The file contains information about several authors and the books that they’ve pub-
lished. We’ll use the content as an object to demonstrate the most important methods listed in
Table 3-2.

To start, we’ll look at the and methods.

76

CHAPTER 3

Working with attribute() and attributes()
You can use the method to locate a specific attribute in an element. You need to provide
the path through the document tree before calling the method. Remember that the
name of the object is equivalent to its root node.

This expression finds the attribute of the second element. The expression starts
by referencing the root element using . It then locates the second author
using . You use the number because the list of elements is zero-based, so the first author
is . The expression uses the method, passing the name of the attribute,

. When you test the SWF application, the Output panel should show the value , as shown in
Figure 3-3.

Figure 3-3. The Flash Output panel showing the result of using the attribute() method

If you need to access all of the attributes of an element or collection of elements, you can use the
 method, as follows:

This expression will display the output , because these are all of the attribute values in the
 elements of the object.

77

ACTIONSCRIPT 3.0 AND XML

You can access individual attributes from this collection by specifying an index. For example, to find all
attributes of the first element, use the following:

Testing that expression will display the value .

Finding child elements
You can find the child elements of a parent element by calling the method and specifying the
name of the child element to locate. Here is an example:

In this case, the expression finds all of the elements associated with the children of the
third element. Remember that the first author is at position 0. Notice that you need to
specify the element structure from the root element, including the and elements. The
expression produces the following output:

The output provides a collection of all of the elements for this author. You could assign
this expression to an object to work with it further.

The method accesses all children of a specific element. The following expression finds all
children of the fourth author:

It produces the following output:

Notice that it finds the , , and child elements.

Finding descendants
The method allows you to access all of an element’s descendants, including text
nodes. The returned content includes the child elements, grandchildren, and every element at lower
levels in the object. Here is an example of using this method:

78

CHAPTER 3

This expression finds all descendants of the element of the fourth author. It produces the
following output:

Notice that each descendant is listed in turn, starting with the complete element, then the
 element and its text, followed by the element and its text.

It’s also possible to pass the name of an element to match within the method, as
shown here:

This expression returns the value .

Finding elements
The method lists all of the elements of the object, ignoring comments and processing
instructions. Unlike the method, doesn’t return the text nodes separately.
You can see how this works by testing the following expression:

This time, you’ll see the following output:

Compare it with the earlier output from the method to see the difference.

Finding the parent element
The method returns the complete parent element for the child path specified. Here is an
example:

79

ACTIONSCRIPT 3.0 AND XML

This expression returns the first element, complete with all of its children:

Locating text
The method returns all of the text nodes in an element. Note that these must be children of
the specific element, rather than descendants. Here is an example of using this method:

If you test the expression, you will see the text nodes under all elements for the first
author:

It’s possible to specify a single node by adding an index, as in this expression:

In this case, the output would display as follows:

You can also combine the method with other methods, such as , as in this
example:

Testing this expression produces the following output:

You see all of the text inside the child elements of this author’s elements.

You can find all of the expressions discussed in this section in the resource files
 and . Uncomment the expressions

you wish to test. Run the file by pressing Ctrl/Cmd+Enter in Flash, or by clicking Debug or pressing F11
in Flex Builder.

80

CHAPTER 3

Finding information about XML content
Other methods of the class provide information about the content in an object. Table 3-3
summarizes these methods.

Table 3-3. Methods of the XML class that provide information about XML content

Method Description

Identifies the position of the child within its parent node, starting
from zero.

Determines whether an object contains complex content.

Determines whether an object contains simple content.

Determines the number of nodes in the object. For an object,
it always returns .

Returns the local name portion of a qualified name of an object,
without the namespace reference.

Returns the qualified name of the object.

Returns the namespace associated with a qualified name.

Returns the node kind: , , ,
on, or .

For complex content, returns XML content as a string containing all tags.
It returns text only for simple content.

Returns all XML content as a string including all tags, regardless of
whether the content is simple or complex.

Constructor method that creates a new object.

Most of these methods are self-explanatory—they return information about the specified XML ele-
ment. Let’s see how some of these methods work in Flash and Flex. Follow the instructions in the
“Instructions for the code samples” section earlier in this chapter to set up the examples.

Finding an object’s position within its parent
You can find the position of an object within its parent by using the method, as in this
example:

Testing this line in the Flash document will produce the output . Because this value is zero-based, it
indicates that the element is the third child element of the fourth element.

81

ACTIONSCRIPT 3.0 AND XML

Determining content type
You can determine what type of content an object contains using the methods
and . Simple content contains only text; complex content contains child nodes.
Both methods return a Boolean value.

The following example returns a value of because the first element has child nodes:

The next example returns a value of because the element contains only text.

Determining the number of elements
The method determines the number of elements in an object or . In the case
of an object, the method will always return a value of , because an XML object contains a single
item. This method returns the number of elements in an . It is typically used to loop through
all of the elements of the list, as shown in the following code sample:

This loop displays each from the object. When you test your sample
file, this ActionScript block returns the following values:

Displaying the name of an element
Both the and methods return the name of an element. The difference is that the

 method returns the qualified name, which will occur if an element is part of a namespace.

The following shows the use of the method:

In this case, testing the code will return the string . Using the method
would display the same output, as the element is not within a namespace.

Determining the type of node
You can determine the type of node within an object using the method. This method
will return one of the following values: , , on, , or

. Here is an example of using this method:

The expression returns the value , indicating that is an element.

82

CHAPTER 3

Displaying a string representation of XML
The and methods deserve some special attention. You can use both meth-
ods to return a string representation of an object. However, there is a slight difference. Consider
the following object:

If you’re working in Flash, add the object to the Actions layer. For Flex, add the following
element:

Call both the and methods on this object, as follows:

When you apply the expression , it returns the text . The expres-
sion returns . In this case, the object
contains only simple content; that is, it is a single node containing text. It means that the
method will return only the text content inside the element. The method
returns the full element, including the opening and closing tags.

If the object contained child elements or complex content, both the and
 methods would return the same content. It would include all elements and text.

If you use the method to display an or object without using either
or , the data will display using the method.

You can find the examples in this section within the resource file .

In addition to the methods mentioned previously, there are a number of methods that allow you to
manipulate the content in and objects.

Modifying XML content
Several methods of the class can be used to modify an existing object. These are listed in
Table 3-4.

You can use these methods to manipulate content within an XML object. For example, you may want
to do the following:

Change the values of nodes and attributes

Add new nodes

Duplicate nodes

Delete nodes

You’ll see how to carry out these tasks later in the book, in Chapter 8.

83

ACTIONSCRIPT 3.0 AND XML

Table 3-4. Methods of the XML class for modifying XML content

Method Description

Inserts a child node at the end of the child nodes collec-
tion of the specified node

Creates a copy of a node

Inserts a child node after a specified child node

Inserts a child node before a specified child node

Inserts a child node at the beginning of the child nodes
of the specified node

Replaces a specified property with a value

Replaces children of an object with specified content

Working with the XMLList class
An object is an ordered list of objects. It could be part of an XML document or a col-
lection of objects. The class is useful because, being ordered, you can loop through the
content. In fact, you saw an example of this a little earlier in the chapter. An object is the same as
an that contains a single object.

If you’re working with an containing a single object, you can use any of the methods of
the class. Methods such as wouldn’t make sense if you were working with more
than one object in the . You can also apply class methods on single elements of an

.

If you try to use class methods on an containing more than one object, you’ll cause
an error. Instead, you’ll need to loop through the and apply the methods on each individual

 element. For example, you can’t find out if an entire contains simple content. Instead
you need to apply the method on each element individually.

You can loop through an in several different ways. Here, I’ll show you examples of each type
of loop. Again, follow the instructions in the “Instructions for the code samples” section earlier in this
chapter to set up the examples.

The first code example shows a simple loop using a counter variable called .

84

CHAPTER 3

The expression returns an of all elements. You can use the
 method to return the number of items in this . In this type of loop, you refer to each

item in the list using its position, a zero-based number. The first item in the list is at position .

Testing the loop produces the following output:

You can also use a loop to work through the . The following code block produces the
same output as the previous example when tested:

You declare as a variable because you’re using it as a placeholder for the name of
the node. This time, you pass the variable to the path to locate each separate
element.

A third alternative is to use a loop, as shown here:

This example produces the same output as the previous two examples. You define a placeholder vari-
able called to refer to each element in the . You can then use the
placeholder in a path with the child node values, as in .

You can find examples of all of these loop types in the resource files and
.

Working with the XMLListCollection class in Flex
If you’re working with Flex, you can access the class. This class is a wrapper for
working with the class. It adds extra collection functionality to an . For example, you
can access methods like and , which aren’t available to the .

You would use the object if you wanted to use the content as a data provider,
because the collection will update when the XML content changes. In fact, Adobe recommends that
you use the object each time you assign an as a data provider. If you bind
an object directly, the binding isn’t monitored for changes.

To work with an object in ActionScript code, you’ll need to import the class first:

85

ACTIONSCRIPT 3.0 AND XML

You can create an object by passing an object when you call the con-
structor method, :

You can also create the object without passing the as an argument. You do this by setting the
 property of the after it is created, as follows:

Table 3-5 shows some of the additional properties that the class makes available
to an .

Table 3-5. Some of the properties of the XMLListCollection

Property Type Description

A function that filters items in the list

The number of items in the list

Specifies the order for the list

The underlying

Two important tasks for developers are filtering and sorting content, so let’s see how the
and properties work with an .

Setting up the Flex application
Follow these steps to create the new Flex application that you’ll use to test these examples:

1. Create a new Flex application in the project you set up earlier. You normally would have only
one application file per project, but for simplicity, you can keep the files together in the same
project.

2. Add the following interface elements:

The interface contains a VBox that holds TextArea and Button components. The TextArea will
display a string representation of the object. Clicking the button will apply a filter and
a sort.

86

CHAPTER 3

3. Add the following ActionScript code block to the file:

The function sets up the object , which is of the type
. The application calls this function after the interface has been created.

The function sets the of the object to an of all
elements inside the first element.

The function then displays a string representation of the list in the
 element. You’ll use the function to demonstrate the
 and properties of the object.

4. Run the application, and you should see something like the output shown in Figure 3-4.

Figure 3-4. Displaying an XMLListCollection object

The TextArea displays an containing books associated with the first author.

Next, you’ll use the property to apply a filter to this list.

Using a function to filter an XMLListCollection
The property property creates a function that filters the items in an .
Calling the method of the applies the filter.

The determines whether a data item matches a filter expression and returns either
 or . If it returns , the item appears in the filtered list.

87

ACTIONSCRIPT 3.0 AND XML

You’ll add a filter function that filters the to display the book with an ID of . The
application will call the function when a user clicks the Click Me! button.

1. Modify the function as shown here. The new lines appear in bold.

The function sets the property of the object to the
 function. It then calls the method to apply the filter, and finishes by

displaying the filtered in the element.

2. The function needs to be added to the block, as follows:

This function works through all items in the . It uses a Boolean variable
 to determine whether the list item should appear in the filtered list. It compares the

 attribute with the value . If there is a match, it sets the variable to ;
otherwise, the variable contains the default value .

It’s a common naming convention to prefix the name of a variable
with its data type. This example uses a Boolean variable, so I’ve used
the name .

The function returns the value of the variable. Items with a return value of
remain in the when the method is called.

3. Run this application. The TextArea initially displays the entire object.

4. Click the Click Me! button. The TextArea will display only the book with the value of ,
as shown in Figure 3-5.

Figure 3-5. Filtering an XMLListCollection object

You can remove the from an by setting the value to and
applying the method.

88

CHAPTER 3

Sorting an XMLListCollection
Another useful feature of the class is the ability to sort content. We’ll work
through an example that changes the function to sort the in
order of the element.

1. Before you add the ActionScript, you need to import the and classes. Add the
following lines under the other statements:

2. You’ll create a object and use the class to specify the sort order. Modify the
 function as shown here. The changed lines appear in bold.

The function starts by declaring a new object called . It then sets the prop-
erty of the sort, using a that specifies the element. The parameter
indicates that the sort is not case-sensitive. Note that if you had only one field to sort in the

, you would pass instead of the element name.

The function sets the property of the to the object and calls
the method. It finishes by displaying a string representation of the sorted list in the
TextArea.

3. Run the application. Figure 3-6 shows the application in a web browser. The order of the
 elements has changed so that they appear in alphabetical order of .

Figure 3-6. Applying a sort to the XMLListCollection

The class also makes a number of additional methods available to an
object. These methods are listed in Table 3-6.

89

ACTIONSCRIPT 3.0 AND XML

Table 3-6. Some methods of the XMLListCollection

Method Description

Adds an item at the end of the list

Adds an item at a specified position

Gets the item at the specified position

Gets the index of the item

Removes all items from the list

Removes the item at the specified position

Places an item at a specified position

These methods add, move, and delete content from the . The methods work in
the same way as with an object.

Next, let’s look at working with the class.

Understanding the Namespace class
The class defines or references namespaces that are included in an object. It also has
other uses in ActionScript 3.0 that we won’t touch on here.

 objects aren’t usually required when you’re working with simple XML content in your SWF
applications. You need to work with namespaces only when you have XML content that refers to
a namespace, perhaps because there’s more than one element of the same name. This can happen
when you refer to XML content from more than one source in the same object. The namespace
provides the context for each element so it can be uniquely identified.

The following example shows an object containing two namespaces in the root element. The
namespace attribute appears in bold.

The first namespace in the root element has the prefix . Any elements that start with this prefix
fall within the namespace. The code identifies that they are associated with
that source.

90

CHAPTER 3

The second namespace doesn’t have a prefix. It is the default namespace for all elements inside the
 element. The , , and elements all fall within the default

namespace.

To refer to any of the elements in this object, you need to qualify them with their namespace.
In order to do that, you need to define a object for each namespace. You can define
a object by referring to its URI, as shown in the following code:

This code creates two objects, which I will refer to using the prefixes and .

As I mentioned previously, the URI that you use in a object doesn’t actually need to house
a document. The only requirement is that the location is unique among all of the namespaces in your
SWF application.

The element in the object is prefixed by the text . This element has a local
name of and a qualified name of . If you had other elements, you would
need to work with the qualified name to distinguish them from this one.

Because the other elements are within the default namespace, they aren’t written with a prefix.
However, when you want to work with them in ActionScript, you’ll need to qualify them with the
default namespace.

You can access an element within a namespace by using the scoping operator . The scoping operator
indicates that the local name is qualified by that namespace. XML documents use a colon to indicate
the namespace. As the colon is reserved in ActionScript, you use the next best thing—two colons.

In this example, the element, is qualified by the object, which was declared earlier.

The next example shows an element in the default namespace.

Even though the element doesn’t display with a prefix in the object, you still need to work with
the default object.

If all objects are within the same namespace, you can set a default namespace by using the state-
ment’s , as shown here:

Let’s look at an example so you can see where the class might come in handy. We’ll work
with a simple document that describes an XHTML element as well as a furniture ele-
ment. I’ll show this example in Flash; feel free to try to re-create it in Flex.

91

ACTIONSCRIPT 3.0 AND XML

1. Create a new Flash document. Add the contents of the document to an object
called , as follows:

2. Set a reference to the namespace in the constructor of the class, as
shown here:

3. Add the following statements to view the contents of the object. You need to use
the scoping operator to reference the namespace.

4. Test the application. It should produce the following output:

In this example, you can see that the object contains two elements of the same name, ,
one within the namespace prefixed with . Tracing the local name shows the contents of
the element that has no namespace assigned. If you had defined a default namespace, the
second element would be associated with it.

Using the scoping operator to add the namespace to the element produces a different
result. It displays the contents of the element associated with the

.

You’ll need to understand this technique if you’re working with elements that fall within declared
namespaces. You can find the example used here saved in the resource file .

 objects are also used with the class.

Understanding the QName class
The class is really an abbreviation for the term qualified name. This class provides a mechanism
for identifying qualified names for elements and attributes in an object. Qualified names are nec-
essary when you are working with elements that fall in namespaces.

A has two parts: the local name for the element or attribute and a namespace URI to associate
the element with a namespace. The namespace URI is optional, and you can omit it. If you do this,
you’ll map the element or attribute to the default global namespace for the object.

92

CHAPTER 3

A object has two properties:

: Returns the local (unqualified) name of the object.

: Returns the URI of the namespace associated with the object.

You can create a object using the constructor method. If you’re using a namespace in
your , you can either create a object or pass a string representing the namespace. The
following example shows the use of a namespace in creating the object:

This example is equivalent to the following line, which uses a string representation of the namespace:

The following steps demonstrate how to create objects and access their properties. We’ll do this
with a Flash file. Again, you might want to re-create this example yourself in Flex.

1. Create a new file and add the file contents to an object called
, as shown here:

The XML document contains two namespaces in the root element. One is the default
namespace, and the other is the namespace , which has
the URI . The default namespace has no prefix. The first

 element is within the namespace. The second is within the default namespace. You
will create objects from these elements.

2. You need to map the two namespaces in the object. Use the following code to create two
 objects:

93

ACTIONSCRIPT 3.0 AND XML

3. Create two objects to reference the elements, as follows:

Using a object allows you to provide a unique reference for each of the qualified
element names.

4. Add the following actions to view the URI associated with each :

5. Test the code. You should see this output:

This example is simplistic, but it shows that you’ve mapped two different elements of the same name
to different namespaces, and you have two different objects that you can use to reference the
two elements. You can find this example saved in the file .

Incidentally, if you were trying to locate elements in this object, you would need to use both
 objects with the scoping operator. For example, to get to the object, you

would need to use this E4X expression:

It could get very confusing if you didn’t understand that the default namespace qualifies the
and elements so it must be included in the expression. This issue is particularly important
when working with web services and RSS feeds. You’ll see this later, in Chapter 10.

As you’ve seen, the new E4X classes provide a more streamlined approach to working with XML con-
tent in SWF applications. However, you need to be aware of their limitations.

Limitations of working with the XML class
While the and classes are great additions to the ActionScript language, there are a couple
limitations to their use. The first is within the ActionScript parser itself. The second relates to the rela-
tionship of the class to external XML documents.

The ActionScript 3.0 parser is nonvalidating, which means that if the XML content refers to an XML
schema or DTD, the parser is not able to check that the content is valid. If you need to check that your
XML content conforms to the rules of its vocabulary, you must do this outside your SWF application.
This could prove cumbersome when using dynamically generated content from a database.

The second issue relates to the loading of external, dynamically generated XML documents into
SWF applications. In order to load external content into a SWF application, the application must first
request the XML document. If the external content changes, the SWF application must request the
document again in order to access the changed content.

94

CHAPTER 3

When working with the class, the only solution is for the SWF application to poll the server con-
tinually, in case the content has changed. It’s simply not possible for the external XML data source
to push content into an object in a SWF application. I’m sure you’ll agree that this is not a very
practical approach. An alternative is to use the class. We won’t cover that approach in the
book, as it’s an advanced topic.

Summary
This chapter introduced the ActionScript 3.0 classes that fall within the E4X specification. You learned
how to work with the object as a data type, and you saw examples of the class properties
and methods. You also learned how to work with the , , , and

 classes.

In the next chapter, we’ll look at some other types of E4X expressions and see how they can be used
to locate content in an object.

97

Chapter 4

E4X is a new recommendation for working with XML documents. ActionScript 3.0
bases all of its XML functionality on this recommendation. E4X is short for the
ECMAScript for XML specification, ECMA-357. This is a standard managed by the
European Computer Manufacturers Association (ECMA). You can find a copy of
the standard at

tm.

In the previous chapter, you saw the classes that form part of the new E4X function-
ality. We worked through the methods of the class that you can use to locate
content in an XML document. E4X expressions provide an alternative to the
class methods for navigating through XML content. As with the class methods,
in addition to retrieving values, E4X expressions can assign values to both attributes
and elements.

E4X expressions provide a type of shorthand that’s similar to XPath, which is a W3C
recommendation that explains how to address content in different parts of an XML
document. You can read more about this recommendation at

, if you’re interested.

E4X expressions allow you to navigate through an XML document using node
names in paths separated by dots. Instead of complicated and not very descriptive
ActionScript 2.0 paths, E4X expressions describe a path to the data using the names
of nodes and attributes to create expressions. These expressions can also apply filters
and insert new content.

USING E4X EXPRESSIONS

98

CHAPTER 4

In this chapter, you’ll work through some examples of E4X expressions and see how to use them
to locate content in an XML object. You can find the resources for this chapter at

.

Understanding E4X expressions
Like class methods, E4X expressions specify a path through element and node names starting with
the root element. A dot separates each name, and the expression reads from left to right. Here is an
example of an E4X expression:

This expression lists each of the node names in order, ending with the element. It also includes
index numbers, to identify the location of the item in its list. It’s much easier to understand this
expression compared with an ActionScript 2.0 path, which might look like the following:

In the second example, you can’t easily determine which content you’re targeting. The use of
 bears no relationship to the name of any element in the XML document.

In addition, because you don’t use names in ActionScript 2.0 paths, you need to loop through collec-
tions of child elements, testing the element name until you locate the correct content. Not only does
this require more code, but it also takes longer to process an XML document than in ActionScript 3.0,
where you can write an expression that targets a precise location.

Using dot notation to locate content is familiar to Flash and Flex developers used to working in
object-oriented environments. They frequently use this type of expression when working with objects,
methods, and classes.

As I mentioned earlier, if you’ve worked with XPath, using dot notation to target XML content will
be an approach familiar to you. In fact, compatibility with XPath was one of the aims of E4X. You’ll
find that the syntax for expressions matches exactly, although E4X expressions provide somewhat less
functionality than XPath.

In broad terms, you can use the following constructs in an E4X expression:

A dot operator () to specify a path through child elements

An attribute operator () to identify an attribute name

The descendants operator () to specify descendant elements

Filter expressions to provide an expression to match

We’ll cover each of these areas in turn by working through some examples. We’ll also compare the
E4X expressions with the equivalent expressions using class methods. If you want to work through
the examples yourself, you can use either Flash or Flex Builder, and I’ve provided instructions for both
environments.

98

99

USING E4X EXPRESSIONS

Working through the examples
To explore E4X expressions, we’ll work with the following XML document, saved as

 with your chapter resources.

This XML document describes a list of authors and their books. It includes several elements of each
type so that the examples can demonstrate many different types of expressions.

We’ll load this content into an object and write a series of E4X expressions. In our expressions,
the name of the object will be equivalent to the root element , so we won’t need to
include that element in the paths that we create.

Before starting, you need to set up the working environment for the examples. Feel free to use either
Flash or Flex.

99

100

CHAPTER 4

Working with Flash
You can work through with the examples in this chapter using Flash by setting up a file according to
the following instructions:

1. Create a new Flash document and add a new layer called actions

2. Open the actions layer in the Actions panel using the F9 shortcut key, and add the following code:

3. Add an object called to the function. Copy the content from the
 document and assign it to an object. The following block shows the

first two lines to get you started:

You’ll add the sample expressions that you want to test inside the function, underneath the
 object. We’ll use and the method of the class to display the

results of each expression in the Output panel. Obviously, in the future, you won’t need these methods
if you’re identifying content that you don’t need to display in the Output panel.

Working with Flex
Here are the instructions for the Flex examples:

1. Create a new project and application file with the name of your choosing.

2. Create a new folder in the folder of the project called and copy the
 file to that folder.

3. Enter the following element after the opening element:

This line assigns the contents from the document in the folder to
the object.

4. Modify the element to add a attribute as shown here:

When the creation of the interface completes, the application will call the function,
passing a object.

5. Add the following block below the opening element:

101

USING E4X EXPRESSIONS

This script block includes the function. You need to import the class, as
that object is passed within the function.

You’ll add the expressions that you want to test inside the function. These expressions will
include so that you can see the results in the Console view. You won’t need to include this
method normally. You must remember to debug the application instead of running it, so you can view
the output. To do so, choose Run Debug and select the application to run.

Let’s start by looking at how to use the dot operator to specify paths.

Using the dot operator to specify a path
E4X expressions specify their paths in the same way as the class methods that you saw in the previ-
ous chapter. They start with the root element, and use element and attribute names in order until they
reach the ending point. The most important thing to remember is that the name of the object
provides the starting point or root node for the path. In our example, all expressions will start with
the name , which equates to the root node and is the name of the object.

E4X expressions can target elements and attributes within an object using their names, and some-
times their position in the list. Some expressions will return text information; others will return an

 object. We’ll start with the simplest of E4X expressions—one that returns text.

Returning text
Very simple E4X expressions appear to return only text. This is the case when you’re targeting the
content that contains only a text node. Here is an example:

Technically, this expression returns an object with a single element, .

To see the results of this expression, wrap it in the method, as shown here:

When tested, the expression displays the output . This is the text stored in the
 element, a child of the root element. Because this example doesn’t specify the

or method to display the information, the method is used. If you’re not
sure about the difference between these two methods, refer to the “Displaying a string representation
of XML” section in the previous chapter.

You can also use the method to return the text content inside the element, as shown in this
example:

This expression returns an of all text nodes within the element. In this case,
there is only one text node: the content .

102

CHAPTER 4

Although the second expression appears to return the same content as the first, it’s actually a little
different. The first expression returns an object, whereas the second example returns the text
inside the object.

Another way to access content is to use the method of the class to retrieve the
 element, as shown here:

This expression returns the element itself, rather than just the text. You might use this approach inside
a function. It’s useful if you need to pass a argument representing the name of the element to
locate. You can’t do that using dot notation.

I think you’ll agree that using the shorthand E4X expression is probably a little easier. It certainly takes
less code, and it is easier to read. When you start to work with more complicated paths, you’ll see that
it’s easier to use the dot notation.

Returning an XMLList
E4X expressions usually return objects. For example, the following expression returns an

 of all elements:

This expression retrieves all child elements within the root node and returns an
object.

Wrap the expression inside a action with the method, as shown here:

Test or debug the application, and you’ll see the following output:

103

USING E4X EXPRESSIONS

The example locates a complete list of elements, including all of their children.

This expression is equivalent to the following class method:

You’ll see the same output if you test this equivalent expression.

When an E4X expression returns an containing more than one element, you may need to
loop through the elements to work with each in turn. The following code block demonstrates how to
loop through this returned by the previous example and identify the name of each author:

This type of loop is new to ActionScript 3.0. There are alternative methods for looping. The “Working
with the XMLList class” section in the previous chapter shows three different approaches to looping
through objects.

You can check that what the E4X expression returns is actually an object by using ,
as follows:

Note that there is a space between the word and in this
expression. Do not try to use , as that will throw an error.

Testing the output displays the value because the expression produces an object.

104

CHAPTER 4

Specifying an index
You might want to work with a specific item from the returned by the E4X expression. For this
reason, E4X expressions can target a specific element by using its index number in the . Each
element has a position in the list, starting at for the first element. You identify the index number
using square brackets: . This approach is very similar to working with arrays in ActionScript.

You can target the first element in the collection of all elements with the following
expression:

This expression produces the following output:

The details of the first author, , display.

This shorthand E4X expression is equivalent to the following line, which uses class methods.

The item index does not need to appear as the last point in the path. You can also include the item
index at other positions, as shown here:

This expression includes two indexes and targets the second book of the first author. Testing the
expression produces the following output:

105

USING E4X EXPRESSIONS

Another way to find this information is as follows:

Again, using class methods creates a much longer expression.

If class methods create longer expressions, do you still need to use them? The
answer is definitely! class methods help out where the name of an element is
a reserved word in ActionScript. For example, if the element were called , in
some situations you would see an error when including the element in an E4X expres-
sion. The solution would be to use instead.

You also use class methods when you want to pass a dynamic element name to
an expression. By using a string value, you are able to substitute a variable name, for
example, when passing an element name to a public method of a class file.

Finding the last element
You can find the last element in an object by using the method in the expression.
This method returns a number equal to the number of items in the . This will be one more
than the last item in the , because the index is a zero-based number.

The following lines show how to use this approach to find the last element in an .

This expression displays the second book of the first author, which also happens to be the last book,
as in the previous example.

Casting returned content
It’s important to note that ActionScript treats all nodes and attribute values as strings, so you may need
to cast values of a different data type; for example, if you want to use a number in a calculation.

The following lines provide a good illustration:

Testing the first line displays in the Output panel or Console view. You can tell that this value
is a string by the expression in the second line, which adds . Testing that expression produces the
output —the two values are concatenated. If you cast the value as a number first and add ,
you’ll create an addition, as shown in the third line. Testing this line produces the sum .

106

CHAPTER 4

Working with dates can be even more problematic, as it’s much harder to cast XML
date types directly as ActionScript date types. The two formats just don’t translate eas-
ily. I’ve found that in most cases, it’s better to use string manipulation to separate out
the date parts and create a new ActionScript date from those parts.

Using the wildcard operator (*)
You can use the wildcard operator to match any name in the object. You can use this operator
in the following way:

This expression finds all children of the root element, regardless of their name, and produces the
following output:

107

USING E4X EXPRESSIONS

You can see that the expression returns all of the content from the object, except the root
element. This expression is equivalent to the following, which uses class methods:

You can also include the wildcard in a longer expression, as shown here:

This expression finds all children of the second author. You would see the following output when testing
the expression:

Notice that the expression provides all content as elements and attributes. The text nodes aren’t
provided separately.

The equivalent expression with class methods follows:

You can also use a wildcard in this way:

This expression retrieves the second child from the list of all child elements of the root node. You
would see the following output upon testing:

And here is the equivalent expression using XML methods:

You can find all the examples referred to in this section saved in the resource files
 and . If you didn’t work through the

examples yourself, uncomment the lines you wish to test.

108

CHAPTER 4

Using the attribute operator (@)
It’s possible to target attributes within an element by using the shorthand attribute operator, .
This operator is identical to the one used in XPath.

Consider the following example:

This expression returns a list of all of the attributes of every element in the
object. You see the following output after testing:

This expression is equivalent to the following class method:

You can use the following expression to find the attribute of the first element of the second
:

You would see when you tested the expression.

The equivalent class methods expression follows:

I know which expression is easier to read!

You can also include a wildcard in the expression with the attribute operator to get a list of all attri-
bute values within an element, as in the following example:

This expression finds all attribute values of the first author. In this case, it displays a value of ,
because we have only a single attribute in the element. The expression is equivalent to the
following:

Looping through attributes
The new ActionScript 3.0 loop allows you to loop through all attributes of an element using
the following approach:

109

USING E4X EXPRESSIONS

This example iterates through all of the attributes of the first element. It uses the method
with the shorthand operator to identify each attribute and displays the value. Again, in our example, the

 element has only a single attribute, so you’ll see the value when you test the code.

You can also loop through the attributes of each author using the following code:

This produces the following output:

The following code block is equivalent:

You can find these examples in the resource files and
. You’ll need to uncomment the relevant lines to test them.

Using the descendants operator (..)
The descendants operator () retrieves all descendants that exist within the object, regardless of
their position. It works in the same way as the class method .

The following expression locates all elements within the object, regardless of their
position:

Testing this expression produces the following output:

110

CHAPTER 4

The expression returns all elements as an . It is equivalent to using the following
method of the class:

You can return all descendants of a specific element by using the wildcard , as follows:

This expression finds all descendants of the element of the first author. Testing produces the
following output:

Notice that the output includes the elements and text nodes. Compare this with the expression that
finds all child elements that you saw earlier. It didn’t return the text nodes.

The equivalent expression using class methods follows:

You can find these examples in the resource files and
.

111

USING E4X EXPRESSIONS

Table 4-1 provides a summary of E4X expressions and their equivalent class methods.

Table 4-1. Summary of E4X expressions and equivalent XML class methods

E4X expression XML class expression

Working with filter expressions
As with XPath, you can use filters in E4X expressions by writing a predicate or condition inside paren-
theses. The filters work in much the same way as XPath. However, unlike XPath, E4X expressions cannot
be used to search for ancestors. When you apply a filter, you’re essentially looping through the entire
collection of elements and returning only those that match the specified condition or conditions.

You can use the and comparison operators to identify specific elements. You can also use AND
() and OR () expressions. You can even use the additive operator () for either mathematical
expressions or concatenation.

Let’s see how each type of filter works.

112

CHAPTER 4

Working with equality
You can apply a filter that tests for equality using . This operator is the same one used in ActionScript
expressions.

You need to specify the element or attribute to compare and the comparison value, as shown here:

The following example finds the details of the element that has the value equal
to :

The predicate works just like an statement. It locates only authors
with a first name of . Filters can be a great way to avoid using conditional statements such as

 in your ActionScript code. They save you from using the ActionScript 2.0 approach of having to
loop through all elements and attributes to test for a condition.

The filter expression produces the following output when tested:

This expression is equivalent to the following:

It returns the entire node for this first name. It’s important to note that, even though
you applied the filter to a child of the element, , you didn’t retrieve
elements from that point onward. It doesn’t matter which element or attribute has the filter applied;
the expression returns content from the point prior to the filter. In this case, it still returns the

 element.

113

USING E4X EXPRESSIONS

A filter doesn’t need to appear last in the E4X expression. You can include the filter partway through
an expression, as shown here:

In this case, the filter still applies to the element, but it returns only the
elements. The expression produces the following output:

The following expression is equivalent:

Applying a filter to an attribute is similar.

This expression returns the entire element for the author with the last name where
the attribute is equal to , as follows:

You can see that it’s possible to apply more than one filter in an expression. The equivalent expression
using class methods follows:

114

CHAPTER 4

Finding inequality
To find elements or attributes that don’t match, you can use the inequality operator (). This works
in the same way as in ActionScript expressions.

The following example shows how to use this operator to find authors with a first name that
isn’t .

When you test the expression, you’ll see the following output:

The expression shows all other elements. In this case, it produces details of the author
. The equivalent class expression follows:

Other comparisons
In your comparisons, you can also use the and operators, as well as the and operators.
The following example finds the name of all books where the cost is below :

Notice that this example uses the descendants operator () to locate all child elements. This
expression produces the following book, which has a cost of less than :

Here is an equivalent expression:

115

USING E4X EXPRESSIONS

Using AND and OR in conditions
You can write more complicated filtering expressions by using the (AND) and (OR) operators.
Again, these are the same operators used in ActionScript. An example follows:

This expression looks for elements with the of or . It uses the descendants operator ()
as well as the OR operator. Testing the expression produces the following output:

This expression is equivalent to the following:

An AND example follows:

This expression finds an author with the first name of and the last name of . You see
the following output after testing the expression:

116

CHAPTER 4

You would get the same result with the following expression:

You could also use the AND and OR operators to find different elements, as follows:

This expression uses the class method with the wildcard operator () to apply the filter
to an element name. It finds all descendants where the name of the element is either or

. Testing produces the following output:

Using the additive operator (+)
You can use E4X expressions in numeric calculations so long as the returned values produce numbers
rather than or objects. For example, you can use the additive operator () to either add
or concatenate element or attribute values. Bear in mind that all values are treated as strings, so you
will need to cast any numeric types appropriately before you carry out the calculation. I’ll illustrate
what I mean with some examples.

The following expression uses the additive operator with two elements:

Testing it produces the following:

The expression concatenates the values and . This occurs because the returned values are
of the data type.

Instead, you can cast the values as numbers before adding them by using the following expression:

In this case, you’ll see the numeric value , which is a result of adding the two book costs.

117

USING E4X EXPRESSIONS

You can use a returned number in any other mathematical expression, as long as you cast it appropri-
ately first, as shown here:

In this case, the expression multiplies the numeric value of the book cost by .

Including other ActionScript expressions
You can include other ActionScript expressions inside parentheses. The following example shows how
you could add a statement instead of a filter, tracing the element:

The example would return the following content:

You might also want to find elements with a specific number of child nodes. The following expression
uses the method of the class to identify the last name of any authors with exactly two

 elements:

In this case, both authors have exactly two elements, so the expression returns the following
output:

I’ll leave you to work out the equivalent expression using class methods!

These examples all appear in the resource files and .

So far, you’ve seen how to retrieve content from an object by using E4X expressions. It’s also pos-
sible to assign values to elements and attributes with these expressions.

Assigning values
You can use an equal sign () to assign a new value to an element or an attribute. We’ll look at how
this works using a simpler object than in the previous example:

118

CHAPTER 4

Simple assignment with =
Consider the following expressions:

In this example, the initial statement displays the value of the first element. There is
only one element, but I’ve assigned the index so I can be sure that I’m working with the first
element, rather than with a collection of elements. The code then assigns a new value

 to the element and displays the value again in the Output panel using .

Testing the example shows the following:

You can see that the value of the first element has been changed.

You can also change the value of attributes in the same way. Here is another example that uses
 to display the before and after values:

Testing these lines displays the following results:

The expression changed the value of the attribute from to .

Note that this change will affect only the object inside the SWF application. It doesn’t do any
updating of the external XML content. You would need to use server-side language to make an exter-
nal change, and I’ll address that topic in Chapter 9.

Compound assignment with +=
ActionScript 3.0 also supports the use of the compound assignment operator () in objects. You
might use this operator to insert an element or attribute. The following example shows how to add
a new element:

119

USING E4X EXPRESSIONS

In this case, the expression adds an element after the element. Testing the expres-
sion produces the following output:

The element has been added and appears after the element as the last child of
. I’ll cover the use of methods that change content in Chapter 8.

You can find the examples in this section within the resource files and
.

Deleting content
The keyword deletes content based on E4X expressions. The following example deletes the

 element from the object you saw in the previous section:

Tracing the resulting object shows the following:

The element has been removed from the object.

You can delete all elements using the following expression:

The resulting output shows that only the root element remains:

You can also delete an attribute using the following E4X expression:

120

CHAPTER 4

Testing the expression shows the element without an attribute:

You can’t use with a filter in the expression, as in this example:

If you do so, you’ll see the following error message:

The error occurs because the E4X expression returns an . If you wanted to delete attributes
or elements based on a filter, you would need to loop through the elements, testing the
attribute value of each. When the code locates the relevant element, it should then call the
statement. This is true even if the returned contains only a single item.

You can find these examples in the files and . As
with the other examples, uncomment the lines you need.

Let’s see how to put some of these expressions into practice.

E4X in action
We’ll finish the chapter by working through examples that demonstrate how to use E4X expressions
with ComboBox and List components. We’ll go through examples in both Flash and Flex—a simple,
procedure-based example in Flash and a class-based example in Flex.

Both examples will show a list of author names in a ComboBox control. When a name is selected,
the books by that author will display in a List control. All content comes from the XML document

. We’ll start with the Flash example.

Flash example
Here are the instructions to set up the Flash example:

1. Create a new ActionScript 3.0 Flash file in Flash. I called the file and sized
it to 420 450 pixels. If you change the interface shown in the next step, you may need to
choose a different size.

2. Create an interface that includes ComboBox, List, and TextArea components, as shown in
Figure 4-1. Add the prompt Choose author for the ComboBox in the Parameters panel. Feel free
to change the interface to something more interesting than that shown in the screenshot!

121

USING E4X EXPRESSIONS

Figure 4-1. The Flash interface

3. Give the ComboBox component the instance name author_cbo. Give the List component the
instance name books_list. Use XML_txt as the instance name for the TextArea component.

4. Name the current layer interface. Add a new layer and name it actions.

5. Select the actions layer and open the Actions panel by pressing the F9 shortcut key. Add the
following lines at the top:

The code starts by importing the class. You’ll need this class to
create a data provider from the XML content for both the ComboBox and the List.

The code also declares a number of variables. It creates an object called . This
object stores the XML content for the interface. The code also creates two objects that
you’ll use as data providers for the ComboBox and List controls. These are called
and , respectively.

The code block finishes by calling the function to set up the application. The final
line is a action. You’ll create the function next.

122

CHAPTER 4

You might be wondering why the example uses objects for the com-
ponent data providers. When you work with XML content, you frequently
use E4X expressions that return objects. It seems reasonable to
expect that an object would be suitable as a data provider.

If you look in the Flash help file, you’ll find that the class
can use only a list, instance, or an array of data objects as a data
source. There is no mention of an . You also don’t have access to
the class, which is available for use as a data pro-
vider in Flex.

Because your only choice here is an object, you’ll need to make sure
that your E4X expressions return an with a single item. You can
then cast the object as an object, because there is effec-
tively a single root element. Using this approach allows you to set an E4X
expression as the data source for any object you create.

6. Add the function signature shown here below the action:

7. Now you need to populate the object. Normally, you would do this by loading
content from an external XML file, and I’ll cover that topic in the next chapter. For this
example, however, you’ll just use a static approach by assigning the content directly to the

 object.

Open the file and copy the content to the clipboard. Assign the
content to the object by pasting the content as shown here. I’ve shown only
the first and last lines because the XML document contains a lot of content.

8. You’ll display the object in the TextArea component using the method so
you can check the structure. Add the following line before the closing brace in the
function:

9. Before moving on, you should check that you’ve created the object correctly. Test
the movie using the Ctrl+Enter (Cmd+Enter) shortcut. You should see the output shown in
Figure 4-2.

123

USING E4X EXPRESSIONS

Figure 4-2. The TextArea displays the contents of the
authorsXML object.

10. If you look at the XML structure, you’ll see that all authors appear inside the ele-
ment. You want to display the author’s first and last names in the ComboBox, so you need to
set the element as the data provider for this control. Add the following lines before
the closing brace of the function:

The first new line populates the object using the E4X expression
. This expression returns an of all elements. There is only one of

these elements, so you’re able to cast it to the type of an object using the construc-
tor method.

You can then create a object from the object and set it as the
 property for the instance. Because you’re working with an object,

the data provider has access to all of the child elements of the root element.

11. Because there are multiple child elements, you need to specify which to use for the ComboBox
label. You could assign a single element or use the property of the ComboBox.
Because you want to display both the author’s first and last name, you’ll need to create
a that joins these values and adds a space in between. Name this function

.

Add the following line underneath the data provider assignment line. It sets the
 property of the ComboBox.

124

CHAPTER 4

12. You now need to create the function. Add the new function, shown here, to
the bottom of the actions layer:

The label function receives an called as a parameter. This contains the
data item from the data provider. The function finds the and

 properties of this and concatenates them with a space in between to
create the full name.

13. Test the movie again. Figure 4-3 shows how the ComboBox should appear, with the names of
four authors. If you can see all of the names, continue with the next steps. If not, you’ll need
to recheck your steps to this point to make sure that you’ve carried them out correctly.

Figure 4-3. Populating the ComboBox
control

14. When the author selection changes, the List control should show all books associated with that
author. The ComboBox needs a change handler to deal with this action, so add the following
line to the function:

This line assigns a change handler function called . It’s common practice to
name the handler functions in this way so it’s easy to determine which event they manage.

15. Now you need to create the function that will be called when the ComboBox selection changes.
Add the following function at the bottom of the actions layer:

The function calls the function, which you haven’t created yet, passing the
 property of the ComboBox. The number is zero-based, so it will tell you exactly

which element has been selected from the data provider.

You find the ComboBox control using the property of the event passed with
the function. You could also use the ActionScript expression

 to achieve the same result.

125

USING E4X EXPRESSIONS

16. The next step is to create the function. Remember that it receives the selected
index in the ComboBox from the function. Add the function to
the bottom of the actions layer.

The function starts by identifying the list of all of the selected author’s books
using the E4X expression . In other words, find any

 descendants with the same index as the selected index of the ComboBox and return
all of that author’s books.

The function creates a new object and populates it with the returned from the
E4X expression. You can assign the value in this way because the E4X expression returns an

 containing a single element, , which becomes the root element of the new
 object.

The function sets the new object as the property for the List
component, by creating a new object. It finishes by displaying the object in
the TextArea so you can check what has been returned.

17. The last task is to display the name of the book in the List control. If you tested the movie
now, you would see the correct number of items in the List control, but there wouldn’t be any
associated labels—only blank lines would appear.

You need to add a label function for the List to the function, at the bottom of the
actions layer, as follows:

This label function is named . It works in the same way as the
function described earlier.

I’ve included the complete code from the actions layer next. I’ve removed the XML content except for
the first and last lines for brevity. In your version, you should see the entire object.

126

CHAPTER 4

Test the SWF file now. Choose an author from the ComboBox, and you should see the List component
populate with the book titles from that author, as shown in Figure 4-4.

Figure 4-4. The completed Flash application

127

USING E4X EXPRESSIONS

In this example, you used a static object to populate a ComboBox control and a List control. As
I mentioned earlier, you would normally load this content from an external file, and I’ll show you that
approach in the next chapter.

You can find the completed file saved as with the other chapter resources. If
you’re feeling adventurous, you may want to extend the example by displaying the year of publica-
tion and book cost as well. You may also wish to add some styling to improve the appearance of the
interface!

Let’s see how we might approach the same application in Flex.

Flex example
For the Flex version of this example, some useful tools are available. You can use data binding
with E4X expressions to update the content of your controls automatically. You have access to the

 class for use in your bindings. It’s also possible to set the external XML docu-
ment as the source for the element, instead of including all of the content within the
application file.

This example uses a class-based approach. Creating custom classes allows you to create reusable code
that you can access in other applications. Again, you’ll display the author names in a ComboBox and
show their book titles in a List control.

1. Create a new Flex project with a single application file. I called the application file
. Add an folder and copy the file there.

2. Create the interface shown in Figure 4-5.

Figure 4-5. The Flex application interface

128

CHAPTER 4

The interface includes the same elements as in the Flash example. The declarative code
follows. Even if you choose a different layout for the interface, use the same component
properties to ensure that the code works correctly.

3. You need to add the XML content to the application. Add an element above the
interface elements with the property set to the file, as
follows:

Remember that the application doesn’t reference this XML document at
runtime. The content is added to the compiled SWF file, which means that
you can’t update the XML document and expect the application interface
to update as well. You’ll need to recompile the SWF application each time
you change the external document. As I mentioned previously, we’ll look
at more dynamic approaches in the next chapter.

4. Add a class to process the content coming from the XML document. To do this, create a new
class called using the command File New ActionScript Class. Create this class
file in the package XMLUtilities, as shown in Figure 4-6.

Once created, the file will automatically contain the following ActionScript:

Don’t worry if the arrangement of curly braces is slightly different in your class file.

129

USING E4X EXPRESSIONS

Figure 4-6. Creating the new ActionScript class

5. You need to add some private variables to the class file. Start by adding the following variables
after the second line, inside the class definition line:

The object will reference the entire XML document referred to in the
element. The variable will provide the content for display in the TextArea.
The object will contain the of all authors, and the is the

 associated with these authors. You’ll bind to the
object, rather than to the object, because the object doesn’t support
binding.

6. The constructor method must be modified. The method will receive the XML
content as a parameter and will set the initial values of two of the variables you created in the
previous step.

The constructor method assigns the passed-in object to the object. It uses
the method of the object to store the string representation in the variable

.

130

CHAPTER 4

7. The class will need two public methods: , which returns the current
variable for debugging purposes, and , which returns an of
all elements. Add these methods now.

The method is self-explanatory. It returns the value of the
variable for debugging purposes.

The method starts by locating the descendants of the
object using the E4X expression . The method assigns the returned

 to the object . The next line uses this to create the
 object. The method also sets the variable to the string

representation of all elements.

Adding the reference to the object should add an statement for
that class, but if it doesn’t, you may need to add the following line yourself:

The complete class file follows:

131

USING E4X EXPRESSIONS

8. Switch back to the MXML application and add an block underneath the opening
 element. Add the following code:

This code block starts by importing the class, which you’ll need because the code
calls the function in the event of the application. The code also
imports the custom class you just created, .

The code declares a bindable variable called , which is of the type .
It also creates the function. This function creates the new object,
passing the object as an argument.

9. You need to call the function when the application finishes creating the interface.
Add the following attribute, shown in bold, to the opening element:

When the application finishes creating the interface, it calls the function, passing
a . You won’t use this in the function, but it is good practice to
recognize that the object is passed with the function call.

10. Bind the ComboBox control to the created by the class file. You can access
the object with a call to the public method . The code handles this by setting
the attribute for the ComboBox to the bound expression

. The data provider will provide access to all child elements of each
element.

You also need to specify a label function so you can determine what to display as the label
for the ComboBox. Call this function , as in the previous example. Modify the

 element as shown here in bold:

11. Before testing this application, you need to add the function to the
block. The function follows:

132

CHAPTER 4

This function receives an object as an argument. This object represents the data item
from the behind the current row in the ComboBox. This data item is one of the

 entries, and it contains the and
elements. The function returns a made up the element, a space,
and the element.

12. You’ll bind the TextArea to the value of the in the class file by calling the
 method. I’ve included this in the example so you can see what’s going on with

the XML content from the object. Modify the element as shown
here in bold:

13. Test the application. Figure 4-7 shows how the interface should appear. The ComboBox is
populated with author names, and the TextArea shows the complete XML content from the

 element.

Figure 4-7. The interface showing the
populated ComboBox component

14. At the moment, nothing happens when you choose an author from the ComboBox. The appli-
cation needs to respond when the selected item changes in the ComboBox control. It must
find the books associated with the selected author.

To achieve this outcome, you’ll bind the data provider for the List control to an E4X expres-
sion that finds the element from the ComboBox data provider. Remember that the
ComboBox provides access to all child elements, including the element.

Modify the List control as shown here in bold:

The E4X expression returns an of all
 elements. The expression references the item

associated with the chosen author . From there, the E4X expression finds the
descendant and returns the element. You’ll be able to follow this path more easily
once you display the XML content in the TextArea control.

133

USING E4X EXPRESSIONS

15. The final step is to display the XML details of the author in the TextArea. Modify the
 as shown here in bold:

The attribute sets the property of the control to the value of the
 from the ComboBox. You’ll be able to see the associated with

the selected element in the TextArea.

16. Test the application again. You should be able to select an author to see the list of books
written by that author. Figure 4-8 shows the finished result.

Figure 4-8. The completed application

In this example, you used an object with an external file to populate a ComboBox and List
control. You were able to display the correct data by using data binding with E4X expressions. This
Flex example provides the same functionality as the Flash example you saw earlier. You can find the
completed resource files for this example saved as and .

Summary
In this chapter, you’ve seen how to use a variety of E4X expressions to locate content in an XML object.
You saw how to use the dot (), attribute (), descendants (), and wildcard () operators. You also
learned about the many different ways to filter the XML content, as well as how to assign and add
values. We finished the chapter by looking at an example in both Flash and Flex.

So far in this book, we’ve used XML content loaded directly into an application. That’s not a very
flexible approach. In the next chapter, you’ll see how to load an external XML document into both
Flash and Flex.

135

Chapter 5

So far in the book, I’ve shown you how to work with the new and classes
in ActionScript 3.0. You can create a new object declaratively, in the same way
that you would create any other type of variable. While it can be useful to create
XML variables with ActionScript, it’s much more flexible to load XML content from
an external data source, and that’s the topic of this chapter.

You can load external XML content either by accessing a static XML document or by
requesting data from a database. If you choose the second option, you’ll need some
type of server-side page to generate an XML information stream from the database.
You can use a language like ASP.NET, PHP, or ColdFusion to create the content for
you. As long as the resulting XML document is well-formed, you can consume it in
a SWF application.

Both Flash and Flex offer several different ways to request external XML content.
Both software packages can use the and related classes in ActionScript
3.0. In addition, Flex can use the class, which can either be scripted or
added as an MXML element. If you create a Flash ActionScript 2.0 document, you can
also use the version 2 data components with minimal scripting.

This chapter concentrates on using the class to load external XML
files. The class can load plain-text files, text in name/value pairs, and
well-formed XML documents. The class is available to SWF files created
in both Flash and Flex. You’ll see methods specific to each software package in the
next two chapters.

USING THE URLLOADER CLASS WITH
XML DOCUMENTS

136

CHAPTER 5

When you use the class to load an external XML document, you can traverse the loaded
content with methods of the class or E4X expressions. You will need to cast the loaded content
into XML format before you can apply E4X expressions or call class methods.

You need to remember that the class uses a request-response approach. The class needs
to request the content from the server, and the server responds by providing the relevant XML docu-
ment. The process can’t be initiated by the server. If the XML content changes externally—for exam-
ple, in the database—the application needs to request the data again. If you are working with external
content that changes regularly, you’ll need to poll the server continually in order to detect changed
content. I’m sure you can see that this solution is not very practical.

The class allows you to create a real-time connection to XML content so that the server
automatically pushes any changes to the application automatically. When an external document or
database changes, the class can provide the information to the SWF application, which can
respond appropriately. The class requires that the application runs on a socket server. As
the subject can be a little difficult, we’re not going to cover XML sockets in this book.

In this chapter, I will show you code samples illustrating how the class works in both Flash
and Flex, and take you through examples using the XML document that we have used in the past two
chapters. I’ll also cover the security implications of working with external content using the
object in Flash Player.

You can download the resources for this chapter from . This download
includes the XML documents used for the examples, as well as the completed files.

Using the URLLoader class
The class makes server requests and handles responses. You can use it to load information
from external files. The information can be formatted as raw text, text containing name/value variable
pairs, or as a well-formed XML document. The class is one of the classes in the
package, along with the and classes.

When you work with a object, all information must finish loading before it becomes avail-
able to the SWF application. So, the application should respond only when it detects that loading has
completed.

Let’s look at the properties, methods, and events of the class.

Properties of the URLLoader class
The class has four properties, as shown in Table 5-1.

The first two properties, and , are useful in determining how much of an
external document has been loaded. You can compare the two values to see how much of the content
has loaded, perhaps if you’re working with a preloader.

The property contains all of the content requested from the external document. This property is
available only after loading has finished.

136

137

USING THE URLLOADER CLASS WITH XML DOCUMENTS

Table 5-1. Properties of the URLLoader class

Property Data type Description

The number of bytes loaded so far

The total number of bytes to be downloaded, populated when the
operation is complete

Multiple The data received when the method completes

The format expected for received data; choose from
, , or

The property determines the format for the contents inside the property. You
can choose from three formats: , , or

.

If the is set to the default value , the property is a string
containing all of the text from the loaded document. Where the format is set to

, the property is a object that contains the raw binary information. Finally,
 loads the property with name/value variable pairs.

In the case of XML content, the default format is appropriate, as XML-
formatted information is just text. However, in order to apply E4X expressions to the property, it
needs to be cast as an object first.

You’ll see some examples of how to use these properties soon, in the “Putting it all together” section.
Next, we will look at the methods of the class.

Methods of the URLLoader class
There are three methods of the class, as summarized in Table 5-2.

Table 5-2. Methods of the URLLoader class

Method Parameters Description Returns

Closes the current operation Nothing

request: Sends and loads data to the specified
.

Nothing

request: Constructor method Nothing

The constructor method instantiates a object. It can take an optional
 object as an argument. If so, the object specifies the URL to access, providing

it as a string value. The URL could be an external static XML document or a server-side file that cre-
ates a stream of XML information. You’ll see how the object interacts with the
object shortly, in the “Putting it all together” section.

137

138

CHAPTER 5

If the constructor method includes a object, the object starts to load the URL
immediately using the method. If no object is passed, you can call the
method at a later stage, again passing a object. It’s probably more common to choose the
second method and load the external content in response to an event such as a button click.

The method sends and loads data from the URL that you specify in the object.
You can send information to the URL within the object by setting its property. This
process might be useful to send variables or a parameter to a server-side page. Again, you’ll see how
this works in practice in the “Putting it all together” section later in the chapter.

The method closes any method call that is currently in progress. The call immediately
ends the operation. If there isn’t a operation in progress, calling the method
throws an invalid stream error.

Let’s move on to look at the events of the class.

Events of the URLLoader class
The class dispatches a number of events to help with tracking the progress of the call to
the URL. Table 5-3 summarizes these events.

Table 5-3. The events dispatched by the URLLoader class

Event Type Description

Dispatched after all received data is decoded and
placed in the property

Dispatched if the method attempts to access
data over HTTP, and Flash Player can detect and return
the status code for the request

Dispatched if the method results in a fatal error
that terminates the download

Dispatched when downloading commences after a call
to the method

Dispatched as downloaded data is received; this event
occurs before all data is received and decoded

Dispatched if the method attempts to load data
from outside the security sandbox

You can see that the class dispatches a number of different events, which make it easy
to respond to errors and to determine the progress of the request. To respond to any one of these
events, add an event listener to the object with a corresponding handler function.

The event is dispatched when the request starts and downloading begins. While the downloaded
data is received, the event is dispatched. Once all data is successfully loaded, the
event is dispatched.

139

USING THE URLLOADER CLASS WITH XML DOCUMENTS

If there is a security error, for example, the event will be dispatched. A security error
occurs if there’s an unsuccessful attempt to load content from outside the current security sandbox.
You can find out more about security sandboxes in the “Understanding Flash Player security” section
later in this chapter.

If the operation can’t be completed because of an error that forces it to terminate, the
 object dispatches an event.

You can find out the progress of any calls made over HTTP through the event. The
 event doesn’t necessarily provide error codes; it just provides any HTTP status code sent

when the SWF application requests a document. However, to access the relevant status codes, Flash
Player must be able to receive status codes. In other words, Flash Player must be embedded within
a web page that can communicate using HTTP.

Limits of the URLLoader class
The operation of the class is restricted to use of the and methods when calling
the method. You can’t use the class to perform any operations that use and .

Putting it all together
Let’s see how these properties, methods, and events fit together to allow you to load an external XML
document.

Creating a URLLoader object
The first step in loading external XML content is to create a object with the constructor
method. The following ActionScript shows how to create this object, without passing a
object as an argument.

Although you can make the request at the same time as instantiating the object, it’s more flexible to
do this at a later stage with the method.

You can also specify the type of data that you expect to receive by setting the property.
If you’re loading an XML document, you don’t need to do this, because you’ll be using the default

, . The following line shows how you could set this
explicitly:

Making the request
To request the URL, you call the method of the object and pass a
object as an argument. The object specifies the URL to load as well as the loading method:

 or . It can also specify header information and MIME type.

140

CHAPTER 5

The following code shows how to request a physical XML file from the server:

The default loading method is , and the property is not set here. However, you can set the
property of the object before you pass it to the object, as shown here:

If you want to request an XML stream generated by a server-side file, you’ll need to include the full
HTTP path in the request, as shown here:

Of course, you could also rewrite this code in a single line, as follows:

Including the full path allows the content within the server-side file to be parsed by the web server
before it is delivered to the SWF application. If you don’t include the full path, the SWF application will
treat the server-side code as literal content.

Sending variables with the request
You can send variables with a request by using the property of the relevant object.
The property needs to reference a object. You’ll need to create this object first
and set the variables as properties of the object, as shown in the following code:

In this code snippet, the object sends the variable with a value of and
a variable named containing the current time.

Sending variables with a request can be very useful to filter the data returned from the server. You
can request the same server-side page each time, but use variables from the SWF file to specify which
results to return.

141

USING THE URLLOADER CLASS WITH XML DOCUMENTS

In the preceding example, imagine that you are requesting an XML document that provides informa-
tion about sales staff for a global company. By sending the parameter with the request, you
can filter the returned information to see only sales staff that service the Europe area. You could
request the same page, , but filter the results by passing a variable so that you show
only North American or Australasian staff.

You’ll also need to send variables with a request when you want to update an external data source.
A SWF application can modify the content in an object, but it doesn’t have permission to update
a static file or database. To carry out such an update, the SWF application needs to send the updated
values to a server-side file for processing. In the preceding example, you could be logging requests for
information. You might be updating the database to tell it that a request for information on Europe
was received at the time indicated by the timestamp. You’ll find out more about communicating with
the server in Chapter 9.

When you pass variables with a object, the method uses an amper-
sand character () as a delimiter for the name/value variable pairs. If you’re using this
method, you’ll need to use to encode any characters that you send as variable
values. If you don’t, you’ll get an error message.

Tracking the progress of a request
You can track the progress of a request by adding a event listener. You can also assign event
listeners for errors and other events. For example, the following code assigns event listeners for the

 and events to the object:

After assigning the relevant event listeners, you’ll then need to create the functions that deal with
each event.

You’ll notice that I used the names and for these func-
tions. There is no requirement to use this naming convention and you could choose
any name that seems appropriate to you. However, using this approach makes it easy
to determine which functions handle each event.

The following functions show some simple responses for each of the events listed in the previous
code block. The code handles the and events, and each function call receives a differ-
ent event object as an argument. The event passes an object; the event passes
a object.

142

CHAPTER 5

Receiving a response
When a successful response is received from the server, the event is dispatched by the

. You can add an event handler to respond to this event, as shown here:

You can use the function to capture the returned data in the property of
the .

The code finds the property of the object using . By default, the
response from the is treated as a string. Notice that I have used the constructor method

 to cast the response as an object. If I didn’t do this, the loaded content would be treated
as a string.

Detecting errors
You can use the and events to respond to errors. You can also use the

 event to determine the status of the request if you’re working over HTTP. Assign
the handlers as shown in the following code block:

143

USING THE URLLOADER CLASS WITH XML DOCUMENTS

You would use the relevant event handler functions to respond, as shown here:

The preceding code samples will make much more sense when you work through some examples in
both Flash and Flex.

Working through examples
In this section, the examples will use the resource file , which is essentially
the same file that you saw in the last example in the previous chapter. You’ll load the XML file with
a object and use it to populate a ComboBox component, as in the previous chapter. The
Flash example is a simple version that uses procedural code. The Flex version uses class files.

Working in Flash
Here are the instructions to set up the Flash example:

1. Start by creating a new Flash document with two layers: one for the interface and one called
actions for the ActionScript code.

2. Add a ComboBox component and a TextArea component, and set up the stage as shown in
Figure 5-1. You’ll use the author names from the XML document to populate the ComboBox.
The TextArea control will display messages and the loaded XML so you can keep track of the
current content.

Figure 5-1. The Flash example interface

3. Use the instance name author_cbo for the ComboBox and the instance name output_txt for the
TextArea.

144

CHAPTER 5

4. Open the actions layer in the Actions panel with the F9 shortcut key and add the following
declarations:

The first line imports the class, which you’ll need so that you can use
a object to populate the ComboBox component. The next two lines create the

 objects that you’ll use: for the loaded content and , which will be
the data provider for the ComboBox.

The last two lines create a object, which handles the XML document
. The code also declares a new object.

5. You’ll use the function to set up the event listeners and load the XML document.
Call the function at the bottom of the actions layer with the following code. The code block
finishes with a action.

6. The code calls the function, but it doesn’t yet exist. Add the function
that follows:

The function adds event listeners to the object. The application listens
for the event, to track the progress of the download. It also listens for the
event. You’ll add the event handler functions and
shortly.

The function also sets the property of the ComboBox. It needs to do
this to determine which values from the loaded XML document should display as the label for
the control.

The function finishes by calling the method of the object. This line requests
and loads the XML document. The function will deal with the parsing of
the loaded content once the operation finishes.

7. Add the following function to track the downloading of the
 document:

145

USING THE URLLOADER CLASS WITH XML DOCUMENTS

This function receives a object as an argument. It shows output in the
 control. The function tracks the property and the

property of the object.

When the document finishes loading, the values of and will be the
same. For large XML documents, you could compare these two properties when displaying
a preloader.

8. You need to deal with the loaded XML content, so add the function to the
Actions panel, as follows:

The function receives an object as an argument, and uses the
 property of the of this object to access the loaded content. The function assigns

the loaded content to the object. It uses the constructor method to cast
the loaded content appropriately.

The function then uses the E4X expression to locate the element in the
loaded document. Because this expression returns an with a single item, the code can
cast it as an object called , ready for use as a data provider. You need to do this
because the ComboBox data provider cannot be an object.

So you can check what data is being accessed, the code displays a text representation of
the object in the control. The function finishes by setting the

 object as the data provider for the ComboBox control. It passes the
object as an argument to the constructor.

9. The last step is to add the function to the application. When you created the
 function, it set the function as the property of the

ComboBox. The function locates the and
properties of each item in the data provider and joins them with a space in between.

Add the following function to the actions layer:

10. Test the application using the shortcut Ctrl/
Cmd+Enter. Figure 5-2 shows an example of
the finished application with an author name
selected.

Figure 5-2. The completed example

146

CHAPTER 5

The first line of the TextArea should show the loaded and total bytes for the external XML document. The
remaining lines show the element and child elements. This element is the data provider for
the ComboBox control. You should be able to open the ComboBox and see a list of all author names.

I’ve saved this simple example as with the chapter resource files. The
complete code from the file follows:

Let’s move on to the Flex example, created with Flex Builder.

Working in Flex
In this example, you’ll create a custom ActionScript class that uses the class to load an
external XML document. You’ll use class methods to locate the required content so you can pass
the element name as an argument when assigning the data provider. This approach will make the class
file much more flexible than if you hard-code the element name in an E4X expression. You’ll see what
I mean when you create the custom class file.

This example uses a slightly different version of the XML content, called .
In this document, the element is a child of the root element, instead of being enclosed
in an element. This structure is more suited to the points I want to make in this Flex
example.

147

USING THE URLLOADER CLASS WITH XML DOCUMENTS

1. Start by creating a new Flex project. I called mine ; you can use any
name you prefer. I called the main application file . Add an
folder to the project and copy the file there.

2. Create a new ActionScript class file using File New ActionScript Class. This class file will
handle the loading and parsing of the external XML content. Figure 5-3 shows the settings for
this class.

Figure 5-3. Settings for the new ActionScript class

I’ve set the package as xmlUtilities and the class file name as MyXMLLoaderHelper. The class file
contains the following code, which was automatically generated by Flex Builder. Don’t worry if
Flex Builder arranges the curly braces a little differently than you see in this example.

3. Modify the class file to make it bindable. This makes all public methods available for use in
binding expressions. Add the following line above the class declaration:

148

CHAPTER 5

4. Add the following statements below the first line package declaration. These state-
ments reference the class files that you’ll need to use.

5. Add the following private variable declarations beneath the class file declaration:

The first variable, , refers to the content loaded from the external XML
document. The code uses the name for the object. The
object refers to the of child elements that will be returned from the loaded content.

This content will ultimately populate the data provider of the ComboBox. However, it will
do so via an intermediate class. The application will use the object

 as a wrapper class when assigning the data provider.

6. Modify the constructor method to create the object and add an event listener to
handle the event. The new lines appear in bold in the following code block:

7. The code will call the method of the object in a public method called
. The application can then control when to call this method. The method

will receive the name of the external document to load as an argument.

You’ll notice that the function includes a statement to provide some very basic
error handling. In the case of an error, debugging the application will display a message in
the Console view. This could be a little more robust, but the code will suffice for this simple
example.

8. When the external document finishes loading, the method will be called.
You specified this handler in the constructor method, but didn’t add the private method to the
class file. Add this method now, as shown in the following code block:

149

USING THE URLLOADER CLASS WITH XML DOCUMENTS

This method is private because it doesn’t need to be accessed by the SWF application. The
method includes a debugging line to display the loaded content in the Console view. Tracing
loaded data is a useful tool, as it helps to check that you’re loading the content that you
expect.

The method also dispatches a event to the SWF application.
The application can listen for this event and respond appropriately.

9. The custom class also needs to provide a method to locate the elements that will populate the
data provider for the ComboBox. This method, , will receive the name
of the specific child element to locate in the loaded content as an argument. In this case, the

 elements are a direct child of the root element in the XML document, so you can use
the class method.

Add the following method to the class file:

The method finds all child elements with the specified name using
the method of the class. You need to use this approach, rather than an E4X
expression, because receives a value for the child element name.
This method returns an of the matching elements.

The code block includes a action to display the returned elements so you can check
that the contains the correct information. Again, this action is included only for
debugging purposes, and you would probably comment it out when moving the application to
production.

The method finishes by assigning the to the object. The
method then returns this object. You can call this method to provide
a data source for any data-aware component. In our case, that will be the ComboBox control.

The complete class file follows so you can check to make sure your code is correct
so far.

150

CHAPTER 5

10. Switch back to the application file for your project. You’ll create an interface similar to that
used in the Flash example. The interface contains Label controls and a ComboBox component.
Create the interface for the Flex application using the following code:

Figure 5-4 shows how the interface should appear. The
ComboBox has the ID .

 Figure 5-4. The Flex interface

151

USING THE URLLOADER CLASS WITH XML DOCUMENTS

11. Add a attribute to the element, as shown here in bold:

When the creation of the interface completes, the application will call the
function.

12. Add the following script block to the application:

The code starts by importing the classes needed for the application. This includes
, passed by the function; the custom class ; and the

 class, required for the ComboBox data provider.

The code block declares a private variable for the object, called
. It also creates a variable called , which will be used as the data

provider for the ComboBox control.

The element includes the function, called when the interface has
finished creating. This function creates a new object, assigns a
event listener, and calls the method of this object, passing the name of the file to load.
You’ll also see an empty function, which will be populated a little later.

13. Now it’s time to do some testing. Debug the application to check that the class file is able to
load the XML document correctly. You should see the loaded XML content in the Console view,
as shown in Figure 5-5.

Figure 5-5. Testing the Flex application

152

CHAPTER 5

14. The next task is to assign the elements as the data provider for the ComboBox. Then
you’ll be able to see the author name in the control.

You’ll need to modify the function as shown in bold here:

The new line calls the method of the object, passing the
 name as an argument. Because you’re passing a child element name, you use this

method to locate any child element within the loaded XML content.

15. The property is set to an object containing all of the child
nodes of each element. Without a label function, the control won’t be able to deter-
mine what to display as the label. You need to create a for the ComboBox so
you can specify which values to display in the control. Add the following label function to the
code block:

The function locates the and properties
from each item in the . It joins these values with a space between to create
the author’s full name.

16. Assign the function as the property by modifying the
 function. Add the bold line shown in the following block:

17. Debug the application again. You should see the list of elements in the Console view.
You should also see that the ComboBox in the application is populated with a list of author
names, as shown in Figure 5-6.

Figure 5-6. Testing the Flex application

153

USING THE URLLOADER CLASS WITH XML DOCUMENTS

Congratulations, you have finished this simple Flex application. The complete code listing for the
application file follows:

You can find the files and saved with the other
chapter resources.

These examples didn’t pass variables to the requested page. That’s the topic of the next section.

154

CHAPTER 5

Updating content with the URLLoader class
As you saw earlier, you can pass variables to the requested page with the object. You might
use this approach to send a parameter to a server-side file so that you can filter the content returned
to the object. You could also use the approach to send values for updating by the server-side page.
Whatever your reason, you will need to work with a object.

Earlier in the chapter, we covered how to create a object and set variables and values.
The following code provides a quick refresher:

Once you’ve created the object, you need to set it as the property of the
object that you’ll pass to the . You can see how to do this in the following lines:

The next example demonstrates how to send values from a SWF file, using the object.
We’ll work through both Flash and Flex versions that demonstrate sending login details with the
request. This practice is common when users needs to log in to an application before they can access
any details. The interface in both cases will consist of text fields that allow a user to enter a username
and password, as well as a button to submit the details. The application will also display a message
from the requested file.

In this case, you will work with a static XML document, so it won’t matter which values you pass. In
Chapter 9, you’ll see how to integrate this approach with server-side pages to retrieve a response. For
now, these simple examples will get you started.

We’ll begin with the Flash example. Like the previous Flash examples, it uses procedural code to keep the
example simple. You can see a class-based solution in the Flex example that follows the Flash example.

Sending variables in a Flash application
Here are the instructions to set up the Flash example:

1. Create a new ActionScript 3.0 document and add the interface elements shown in Figure 5-7.

The interface consists of some static text, two TextInput
controls, a Button component, and a dynamic text field.
The TextInput controls have the instance names username_
txt and password_txt, respectively. The Button is called
login_btn and has the label Log in. The dynamic text field
has the instance name message_txt. In the Parameters tab,
set the displayAsPassword field to true for the password_
txt instance.

 Figure 5-7. The Flash login example
interface

155

USING THE URLLOADER CLASS WITH XML DOCUMENTS

2. Add a new layer called actions and open it in the Actions panel with the F9 shortcut key. Add
the following ActionScript code to set up the application:

The first three lines declare the variables that the application needs. First, the variable is
a object that will send the request. The second variable, , is a
object that details the page that the application will request. , the last variable,
is a object that will pass the username and password. The final line calls the

 function, which you’ll create in the next step.

3. The function will need to create the , , and
objects. The object will need to specify the page to be requested.

Add the following function underneath the function call from step 2:

In this example, instead of working with a server-side page, the application calls a simple
XML document. Because it sends values to a static XML document, you need to use the
method; otherwise, the application will throw an error. There won’t actually be any processing
of the username or password values.

4. The application will send the variable names and values to the XML document in response to
the button click. You’ll need to add an event listener to the Button that listens for
the event. I’ve called this function .

Modify the function as show here, to include the line shown in bold:

5. Add the function that follows. At this stage, the code includes a simple
 statement so you can test your code, but you’ll add something more useful shortly.

6. Test the application with the Ctrl/Cmd+Enter shortcut. You should be able to click the button
and see the message I’m clicked in the Output panel.

156

CHAPTER 5

7. You now need to modify the function so it actually performs a task. First, it
will check that values have been entered for both the username and password. If not, an error
message will display. If the user enters both values, the function will add them to the

 object and request the external document with the object. It will also
need to clear any existing value from the text field.

Add the following function to the actions layer:

8. You don’t yet have a function to respond to the requested page, so you need to add an event
listener that responds to the event of the . Add the following line to the

 function:

9. Now you need the function that responds when this event is dispatched. Add the following
 function:

The function finds the loaded content using , and casts it as
an XML object using the constructor method. The function displays a string representa-
tion of the returned content in the dynamic text field using the method.

The external XML document contains a single element:
. Because this is a simple element, without children, the method returns

only the text inside the element.

10. You can’t test this example until you copy the
document from the chapter resources to the same folder as
your Flash application. Once you’ve done so, test the file and
click the Log in button. You should see the message Login
successful displayed in the dynamic text field, as shown in
Figure 5-8.

Figure 5-8. Testing the
Flash application

157

USING THE URLLOADER CLASS WITH XML DOCUMENTS

In this example, you can’t tell whether the variables have been sent suc-
cessfully to the XML document, because no processing occurs in that
page. You’ll see some more sophisticated examples of sending variables
with a object in Chapter 9, where the variables that you send
will elicit a response from the requested page.

The complete code from the actions layer follows. Check it against your own code to make sure that
you don’t have any errors.

You can find the files for this example saved as and with the other
chapter resources.

If you want to see another event in action, try removing the . property and add an
event handler listening for an . Removing the property will make the example use the

 method. This method will cause an when you try to request the static XML document.
You can see a sample of this error-handling function in the resource file.

158

CHAPTER 5

Sending variables in a Flex application
Let’s re-create the previous example using Flex Builder. In this case, the example uses a custom class
file to work with the content.

1. Create a new Flex project and application file with the name of your choosing. Add an
folder and copy the file there.

2. Use the File New ActionScript Class command to create a new ActionScript class. Add the
class to the xmlUtilities package and call it XMLLoaderWithVariables.

3. Add the following statements beneath the package declaration. These statements
reference the classes that the application needs to use. Note that these statements will also be
added automatically when you declare the variables in step 4.

You could replace these statements with one that imports all
classes in the package at the same time: .
Even though that statement is valid and much shorter than my approach,
my preference is still to import classes individually so that I can see which
I’m using in the current application. Feel free to use the wildcard instead
if you prefer.

4. Add a bindable declaration above the class declaration. This declaration makes all public
methods and properties bindable in the application file.

5. Declare the following private variables below the class declaration:

The first variable, , will store the returned XML content from the document. The
second variable, , refers to the object that will make the request.
The third variable, , refers to the object that will handle the page
request and passed variables.

6. Modify the constructor method as shown here:

The method creates the object and adds an event
listener that responds when the operation is complete. When the external file finishes loading,
the handler will execute.

159

USING THE URLLOADER CLASS WITH XML DOCUMENTS

7. Add the method now as shown here:

This method assigns the loaded XML content from the external file to the object
, casting it to the type with the constructor method. The method then

dispatches the event to the application so it will know that the request has finished
and the loaded data is available.

8. You’ll need a public method that handles the request for the external file. This method,
, will receive two arguments: the name of the file to request and the variables to

send with that request. When the Flex application calls the method, it will pass
a object as the second argument.

This method encloses the content in a block to provide some simple error han-
dling. In the case of an error, the application will display the message Can’t load external XML
document in the Console view. You would probably make the error handling a little more
robust in a real-world application, so feel free to modify the code at this point if you want.

The method creates a new object, using the URL passed in as the first
argument. The method assigns the variables argument to the property of the
object and sets the property to the variables to the requested page. It finishes by
calling the method to make the request.

9. The class will need one public method to return the content from
the external document. The external document will send back a single simple element,

. Applying the method will result in only the text from the element
being identified.

Add the following public method to the class file:

160

CHAPTER 5

That’s it for the class file. Check your contents against the complete code block that follows:

10. Switch back to the Flex application file. Create the interface shown in Figure 5-9.

The interface consists of some Label controls, as well as
two TextInput components for collecting the username and
password. The second component has its displayAsPasword
setting set to true.

There is also a Log in button, which will trigger the
 request, as well as a TextArea, which displays

messages. If you change this interface, make sure that you
use the same ID settings for all components.

Figure 5-9. The Flex login applica-
tion interface

161

USING THE URLLOADER CLASS WITH XML DOCUMENTS

The declarative code to create the interface follows:

11. You’ll set up the application by calling a function in the attribute of the
 element. This function is called , and it will set up the variables

you’ll need, including a new object.

Modify the element as shown here in bold:

12. Add the following , including the function. I’ll explain it after the code
block.

162

CHAPTER 5

This element starts by importing the relevant classes. The application needs the
 class, as this type of event is dispatched when the interface finishes creating. It

also needs to import the custom class that you just created, , and to
create an object of this type called .

The function receives a as an argument. It starts by creating a new
instance of the class and then assigns the
function to be called when the finishes loading the external document. At the
moment, this function doesn’t contain any code.

The function also assigns an event listener to the instance. This listener responds to
the event of the button with the function. The block also
contains an empty function.

13. When the Log in button is clicked, the application needs to check that the username and
password are filled in before calling the method of the
object. When the method is called, the method call will pass the URL of the
document to load, as well as a object containing the entered username
and password.

Modify the function as shown here in bold:

The function starts by testing that the length of both the username and pass-
word entries is greater than . If this is the case, the function creates a new
object and assigns the and properties from the entries in the TextInput
controls. It then calls the method, passing the name of the document to request
and the object.

If either of the TextInput controls do not contain any text, the message You must enter both
a username and password before clicking the button displays in the TextArea at the bottom of the
interface.

14. The last step in building this application is to respond when a reply is received from the
 file. The application will display the reply in the TextArea control. It does this in

the function, so modify it as shown in bold here:

163

USING THE URLLOADER CLASS WITH XML DOCUMENTS

15. Now you’re ready to test the application. Run it and enter values for a username and password.
When you click the button, you should see the TextArea update, as shown in Figure 5-10.

Figure 5-10. The completed Flex
login application example

The complete code for the application file follows:

164

CHAPTER 5

You can find the resource files for this example with the other chapter resources, saved as
 and .

You’ve seen several examples of loading external content using the class. When you request
external data, you’re subject to Flash Player security restrictions, so it’s important to understand these
and the limitations that apply.

Understanding Flash Player security
When accessing external documents, the security model in Flash Player 9 and 10 is based on the rela-
tive locations of the SWF file loading the data and the source of the data. The rules discussed in this
section also apply to Flash Player 8, although Flash Players 9 and 10 have some extra restrictions dis-
cussed in the section entitled “Finding problems with the cross-domain policy file.” Note that earlier
versions of Flash Player have different approaches to security. I’ll refer only to Flash Player 10 here, as
it is the most recent player at the time of writing, but the same rules apply to Flash Player 9, too.

The basic rule is that a SWF file can access any data from the same subdomain as its own location. By
default, it’s not possible for the SWF file to load content from a different domain or subdomain. This
restriction also applies between local and network domains. SWF files on the network cannot access
local data, and local SWF files cannot access network data, because they’re in different domains.

Understanding security sandboxes
Flash Player 10 allocates SWF files to their own security sandbox, which equates to their exact domain.
For example, SWF files located in the following domains are considered to be in separate sandboxes:

165

USING THE URLLOADER CLASS WITH XML DOCUMENTS

Even though the IP address may resolve to the first domain in this list, it is still consid-
ered to be in a separate security sandbox.

If you need to load data from another domain into your Flex application, you can choose from the
following two alternatives:

Specifically allow access by using a cross-domain policy file on the server hosting the data
source

Use a server-side proxy file to access the remote data and locate it within the local domain

Creating a cross-domain policy file
A cross-domain policy file is an XML file called , which lives in the root of the web
server that hosts the external data. The file does not live in the same domain as the requesting SWF
application. The cross-domain policy file grants permissions to specific domains to access the data
stored there.

If the file does not reside in the root directory of the server, the SWF file can request
it from a different location using the method. The cross-domain policy file
will apply only to the directory from which it is loaded and any child directories. For example, you
might use this method to restrict access to content in the folder and any child folders.

Writing a cross-domain policy file
The cross-domain policy file needs to have the following structure. For Flash Player 10, this structure
must be exact.

This cross-domain policy file allows access to the data by , any subdomain of
, and the IP address . Note that you can use the wildcard to specify

any subdomain.

You can also use a wildcard to grant access to all domains:

If the SWF requesting the data appears in any of the domains listed in the cross-domain policy file, it
will be granted access to the content by Flash Player 10. If not, the SWF won’t be granted permission
to load the data, and the application will generate a .

166

CHAPTER 5

If you’re working with secure domains, it’s possible to include the attribute within an
 tag. This attribute has a default value of , which restricts data on a secure

HTTPS server from being accessed by anything other than another HTTPS server. You can set this value
to if you want a secure server to be able to be accessed by both secure and insecure servers.

Issues with the cross-domain policy file
Be aware that Flash Player 10 has tightened up some of the requirements for cross-domain policy files.
First, Flash Player 10 will recognize cross-domain policy files only where the content type is set to any
text type (), or to or . The content type is set by the
response headers provided by the HTTP server, so you may need to check that the server settings are
correct if you’re having difficulties with the policy file.

In addition, Flash Player 10 will reject any policy file with contents that are not well-formed or that
are invalidly formatted. The root element of the file must be >, and none of
the elements in the file can contain text children. In addition, if the cross-domain policy file contains
characters before or after the opening and closing tag, with the exception of
legal declarations, Flash Player 10 will reject the file.

If the HTTP server redirects a cross-domain policy file to a location within the same domain, Flash
Player 10 will treat the redirected location as the final destination, not the initially requested URL.
Earlier versions of Flash Player did the opposite, treating the initial location as the final destination and
ignoring the location of the redirect.

Because the final destination dictates which domain and subdomain will be accessible to Flash Player
10, any HTTP server redirects could potentially cause problems. If the policy file doesn’t reference the
redirected location, Flash Player 10 will not access the external data.

If you don’t have access to a cross-domain policy file on the remote server, you can proxy the external
data locally.

Proxying data locally
If you can’t add a cross-domain policy file to a remote server, you can use a server-side file to request
the external content and provide it to your SWF application. This is likely to be particularly use-
ful where you’re requesting an XML-formatted stream from an external source, perhaps as a web
service.

As long as the server-side file is in the same domain as the SWF application, you’ll be able to load the
proxied content. The application will think that the data is local and therefore in the same security
sandbox.

You can write the simple server-side proxy file in the language of your choice. You can find out
more about the topic at

. At the time of writing, the article had examples of proxy files written in ColdFusion,
PHP, ASP, and using a Java Servlet. LiveCycle Data Services ES also provides a complete proxy manage-
ment system for Flex applications.

167

USING THE URLLOADER CLASS WITH XML DOCUMENTS

Summary
This chapter covered the class and discussed its properties, methods, and events.
We worked through Flash and Flex examples to demonstrate how to use this class and related classes
to request external content. We finished by looking at some of the security issues surrounding
Flash Player.

The next chapter covers some of the loading methods that are specific to Flex.

169

Chapter 6

In the previous chapter, I showed you how to load external XML content into both
Flash and Flex using the class. You saw that you can load content from
a static XML file or from a server-side page that generates an XML stream. Both Flash
and Flex can use the class. The advantage of loading external content is
that your applications will be more flexible than if you store the content within the
application itself.

While Flex can use the class, it can also use the class to
access many types of external content, including XML-formatted content. It’s pos-
sible to either use a tag-based approach with the MXML element or
to write ActionScript 3.0 code to work with the class. In this chapter, I’ll
cover both options and show you how to use them to load external XML files.

As with the class, when you use the class or
element to load external XML content, you can access the loaded XML tree using
methods of the class or by writing E4X expressions. Unlike the class, in
which all content arrives as text, with the class and
element, you can specify the format for the loaded content in advance, so there’s no
need to cast the loaded content as an data type.

The class and element both use a request-response
approach. This means that any application using them needs to request the content
from the server first, before the XML content is provided to the Flex application.

If the external data changes, the server cannot initiate the process and inform the
Flex application that something has changed. So, if you are working with external
content that changes regularly, you’ll need to poll the server at regular intervals in
order to detect if the content has changed. This process is likely to be unwieldy, so

LOADING METHODS SPECIFIC TO FLEX

170

CHAPTER 6

you may wish to look at an approach involving the class. You can use the class
to create a real-time connection to XML content. When the content changes, the server can notify the
Flex application of any changes, causing the application to update without first making a request. The

 class requires that the application runs on a socket server. That topic is beyond the scope
of this book.

In this chapter, we’ll focus on the element and class. I’ll explain the
properties, methods, and events of both, and show you how they differ. The code samples will illus-
trate how to use MXML tags and also demonstrate a class-based approach.

Remember that the loading of external content is subject to the security restrictions of Flash Player.
Each version of the Flash Player has slightly different security considerations. At the time of writing,
the latest version was Flash Player 10. You can find out information about Flash Player 10 security in
Chapter 5 of this book.

As usual, you can download all of the resources for this chapter from .
This download includes the XML documents used for the examples, as well as my completed files.

Let’s begin!

Loading external content
Both the tag and class allow you to request content from a URL and
to receive a response. You can optionally send parameters with the request, perhaps if you need to fil-
ter the content. The tag exists in the package; the
class is in the package. Both work in much the same way, although there are some subtle
differences between the two.

As with the class, when using either the tag or class, pro-
cessing of the loaded content should wait until the request has successfully completed. The applica-
tion is notified either when it receives the results of the request or a fault is generated.

I’ll deal with the tag and class separately. We’ll start by looking at the
 tag.

Using the <mx:HTTPService> tag
The MXML element provides a tag-based approach that developers can use to
request an external document and access its content. The element works with only the Flex frame-
work and has no equivalent in Flash.

The element is useful for developers who don’t wish to adopt a scripted approach
in their applications. Thanks to data binding, it’s possible to request a document, access the contents,
and display them in a Flex interface without writing a single line of ActionScript 3.0.

Before we see this element in action, let’s start by looking at the properties, methods, and events of
the tag.

170

171

LOADING METHODS SPECIFIC TO FLEX

Properties of the <mx:HTTPService> tag
The properties of the tag are shown in Table 6-1.

Table 6-1. Properties of the <mx HTTPService> tag

Property Data type Description Default value

Provides access to the
used by the service. These are the
channels used to send messages to
the destination.

Indicates how to handle multiple calls
to the same service. The choices are

, , and .

Specifies the type of content for the
request. The choices are

 and
.

Indicates the destination
name specified in the

 file. This file is used with LiveCycle
Data Services ES.

Custom headers to send with the
.

The result of the last request made to
the service.

Determines whether returned anony-
mous objects are forced to bindable
objects.

The HTTP method used to send the
request. Choose from , , ,

, , , and .
Chapter 9 explains more about the

 and methods.

An object containing name/value pairs
that are parameters for the requested
URL.

Sets the timeout for the request in
seconds.

Continued

171

172

CHAPTER 6

Table 6-1. Continued

Property Data type Description Default value

Indicates the expected format for
returned content from the request.
Choose from , , ,

, , and .

The URL to use as the basis for calcu-
lating relative URLs. Used only when

 is set to .

The URL or location for the service.

Determines whether to display a busy
cursor while the request is loading.

Determines whether to use the Flex
proxy service.

Sets the function to use to decode
XML returned with the
of .

Sets the function to use to encode
a service request as XML.

Some of these properties need a little more explanation:

: The property dictates how the application should deal with multi-
ple calls made to the same service. The default value of indicates that multiple
requests to the same service are allowed. With this setting, the developer would need to man-
age the response from each request separately to make sure that the results don’t get mixed
up. A value of allows the application to make only a single request at
a time. If the application makes more than one request, these additional requests will generate
a fault. Setting the value of the property to means that when the application
makes a request, any preexisting requests to that service are canceled. You might use this value
if you provide the functionality for canceling requests in your application.

: You can set the property to indicate what type of content the
request sends to the target URL. The default value of
sends the request as name/value pairs. You can override this default value and specify that the
content sends the request in XML format by using the setting.

: The property allows you to set custom headers that will be passed with the
request. At the time of writing, there is a known bug that prevents custom headers from being
sent when the HTTP method is selected. The bug is documented at

05. The work-around is to use the method instead.

173

LOADING METHODS SPECIFIC TO FLEX

: You can set the property to indicate which HTTP method should be used to
send the request. If you don’t set a value, the request will be made using . As detailed in the
previous paragraph, you may need to set the method to in order to pass custom headers.
Unless you go through the server-based proxy service, you can use only HTTP or
methods with the request. However, the other methods become available if you set the

 property to and use the server-based proxy service. This topic is beyond the
scope of this book; consult the Flex help for more information.

: If you need to send parameters or variables with the request, the property
passes an of name/value pairs. However, you would need to pass an object instead
if the property is set to .

: You can set a timeout for the request with the property.
The property uses a value in seconds. You can bypass this property and consequently allow no
timeout by using a value of zero or less. You might set a timeout so you can prevent the user
from waiting if there is no response from the web server in a reasonable amount of time. If you
don’t set a timeout, the request might fail without the user being aware that there is
a problem.

: The property indicates the expected format for the returned
results. The default value, , expects a returned XML value and parses it as a tree
of ActionScript objects. A value of expects an XML value, which is parsed
as a tree of ActionScript objects. The difference from the first value, , is that if
the top-level object is not an , a new is created, and the result is set as the
first item.

When loading XML content, you need to set the value of the to if you want
to take advantage of the new class and traverse the content using E4X expressions. The
value returns the content as literal XML.

It’s confusing but you shouldn’t use the of when you work with ActionScript
3.0. You should use this value only if you want to work with the ActionScript 2.0 class. This
book addresses mainly ActionScript 3.0, so we won’t look at the legacy class at all.

The other two values for the property are and .
returns text containing name/value pairs separated by ampersands. If you’ve worked with the

 class in ActionScript 2.0, you’ll be familiar with this format. The value returns
the content as raw text.

: The property determines the URL or page used in the request.

: The property does exactly as its name suggests: it displays an
hourglass busy cursor while the application makes a request. This property is available only to
the MXML tag and it can’t be scripted (which I think is a great pity).

I’ll show you how these properties work shortly, in the “Putting it all together” section. Next, let’s look
at the methods of the tag.

174

CHAPTER 6

Methods of the <mx:HTTPService> tag
Table 6-2 summarizes the main methods of the tag.

Table 6-2. Methods of the HTTPService tag

Method Parameters Description Returns

Overrides the most
recent request

Disconnects the network
connection of the service
without waiting for the
request to complete

Nothing

, Constructor method Nothing

Executes the
 request

The method is straightforward. The other methods work as follows:

: The method cancels the most recent request. It returns an
 object, which provides a way to set token-level data for remote procedure calls so

you can identify each one individually.

: The constructor method instantiates an object. It
can take an optional value as an argument, which specifies the root to use when cal-
culating relative URLs. The method can also take an optional argument, which
corresponds to an destination name in the file. That topic
is a little beyond the scope of this book, so I won’t go into it here, other than to say you might
use this approach if you’re working with Flex Data Services or making a non- HTTP request.

: The method is probably the most important method of all. It actually sends the
request, optionally with an containing name/value parameters for the request. If the

 property is set to , the application would need to pass an
object with the request.

Let’s move on to events next.

Events of the <mx:HTTPService> tag
The tag dispatches a number of events, as summarized in Table 6-3. Unlike the
and events dispatched by the , there aren’t any events here to determine the
progress of the request.

175

LOADING METHODS SPECIFIC TO FLEX

Table 6-3. The events dispatched by the HTTPService class

Event Type Description

Dispatched when an call fails

Dispatched when the call is invoked, providing an error isn’t
encountered first

Dispatched when an call returns successfully

Of these, you’re most likely to use the and events.

Putting it all together
Let’s see how these properties, methods, and events work together to create an request
using a tag-based approach. A little later, you’ll see how to accomplish the same tasks using the

 class.

We’ll start with creating the initial request.

Creating an HTTPService request
To create an request using an MXML tag, you need to use the
element. In order to use it within your applications, you should specify an attribute and a for
the component, as shown here:

This example creates an element with an of that requests the exter-
nal file .

The property will need to include the full path for any server-side files so that the server-side code
can be processed correctly. For example, if you are generating XML content using the file
running in the folder on , use the following MXML tag:

Making the request
You need to make the request for the URL specified in the tag by using the method of the

 element. You call this method and refer to the element using the property from
its tag. You can optionally send variables inside this method call; you’ll see that approach in the next
section.

To make the data available when the application first loads, it’s common to call this method in the
 or event of the tag, as shown in the example here:

176

CHAPTER 6

If the content doesn’t need to be available when the application first loads, you could also call
the method in response to a button click or some other event. In this case, you would add the
method call inside the click handler for the button. You can see an example of this approach in the
following simple event-handler function:

The request won’t be made until the button is clicked.

Sending variables with the request
You can send variables or parameters with the request. For example, if you’re request-
ing database content through a server-side file that collates the XML content, you might send one or
more parameters to filter the results returned in the response. This approach allows you to be more
flexible by using the same server-side page in different situations.

There are several ways to send variables with the request. First, you can send variables at the same
time that you call the method. If you choose this approach, you can specify an contain-
ing the name/value variable pairs inside the method call, as shown here:

Here, the use of the curly braces indicates that you’ve created an containing a property with
the name and the value .

You can also can use the tag inside the tag to list the parameters.
In the next code block, the tag sends the same parameter, , as in the
previous example:

In this example, notice that the property is written as a tag within the
element. Notice also that the tag uses a lowercase initial letter , unlike the uppercase
letter in most other elements. The tag is a container for the parameters, rather than
a class in its own right.

The format for the parameters is determined by the property. The default value of this
property is ed, which equates to name/value variable pairs. You
can also use the setting if the URL that you request expects to receive raw XML data.
You could set this value as shown in bold in the following code block:

177

LOADING METHODS SPECIFIC TO FLEX

In this case, you would need to send the variables in XML format. The following block shows how you
might do this inside the event of the application:

Specifying a return type
Remember that there are several different return types that you can specify for the
element. These are , , , , , and . When you’re working with external
XML content in ActionScript 3.0, you’ll use the value in most cases, as this return type will allow
you to interrogate the loaded content using E4X expressions.

You set the property for the element as shown in bold in the following
code block:

In this case, the code sets the property to so that you can use E4X methods with
the loaded content.

Specifying a request method
Parameters are always sent using HTTP , unless you specify something else with the prop-
erty. In most cases, you would add this property to the tag to use the method
for the request, as you can see in the following example:

You can also specify , , , , or , but only if you set the property to
 and use the server-based proxy service. As I mentioned earlier, I’m not going to cover this topic

because it is beyond the scope of the book.

Receiving a response
When the element receives a response, it dispatches a event to the appli-
cation to notify the application that the server response is available. If the request fails, a event
is dispatched to the application.

178

CHAPTER 6

You can specify handlers for each of these events in the element, as shown in the
following example.

Both of these handler functions receive an event object as a parameter; however, they are different
event types.

The role of the event handler function is to process the loaded content and add it to the
application interface appropriately. This handler function will receive an event that is of the type

.

The event handler should process the passed . Its role is to respond so that the
request for the service doesn’t fail silently without the user knowing what has gone wrong. The
event handler would normally notify the user that the call has failed and provide a reason for the
failure wherever possible.

It’s not necessary to name the handler functions as I’ve done here, using the names
 and . In fact, you can use any name that seems logical

to you for these functions. However, it’s a handy convention to name the handler func-
tions according to the event that they handle, because it is easier to follow the logic
within the application code. If you want to see which method deals with the
event, you can immediately look for the function.

The final task is to access the loaded content, However, I’ll deal with this topic separately, after I cover
the class.

Using the HTTPService class
The class exists within the package. Although it operates in a similar way to
the tag, there are some minor differences, which I’ll highlight next.

Properties, methods, and events of the HTTPService class
The class has most of the same properties as the element. However,
the and properties from the element are not avail-
able to the class.

The only difference between the methods of the tag and class is the construc-
tor method. The class constructor method, , takes only a single optional
parameter, the , which is a value used when calculating relative references. It does not
allow as an optional parameter.

The events of the tag and the class are identical.

179

LOADING METHODS SPECIFIC TO FLEX

Putting it all together
This section describes how to use a scripted approach with the class properties, meth-
ods, and events. I’ll show you the same tasks that we covered when looking at a tag-based approach.
Again, we’ll start with making the request for the service.

Creating an HTTPService request
You can create an request with the following ActionScript code:

The code starts by calling the constructor method without passing a parameter to create the
 object. It then sets the property for the service to call the external file .

This example is equivalent to the tag-based code that you saw earlier.

Making the request
To make the request, you need to use the method of the class and refer it using
the assigned to the object. If the data needs to be available to the application when it first loads,
it’s common to call the method in an initializing function, as shown here:

The function would set any properties for the object, including event
handlers. It will usually finish by calling the method of the object.

You might see code similar to the following in the function:

As I discussed earlier, if the content doesn’t need to be available when the application first loads, you
might call the method in response to some other event. For example, you could add the call
inside the click handler for a button, as you can see in the following example:

In this case, clicking the button calls the method.

180

CHAPTER 6

Sending variables with the request
You can send parameters or variables to the request using ActionScript 3.0. As I mentioned before,
you might use these parameters to filter the results returned by the request.

The first approach is to add an containing the name/value pairs inside the call to the
method, as you can see in the following line:

This line sends the parameter and its value with the request.

Another approach is to add the parameters to an first. You can then assign the to the
 property of the class.

You can also set the property for the parameters, as shown here:

You would do this if you were sending an object containing the parameters for the request.

Specifying a return type
You can set the return type for the results of the request when scripting the class, as
shown here:

In this case, the results will be treated as an XML document that you will be able to interrogate with
E4X expressions.

Specifying a request method
As I’ve mentioned previously, parameters are always sent using HTTP , unless you specify some-
thing else with the property. You can set this value in ActionScript, as shown here:

This line sets the method to . You can find a discussion about using and in Chapter 9.

Receiving a response
As you saw earlier, when the receives a response, it dispatches a event. It dis-
patches a event if the call fails.

You can specify handlers for each of these events, as shown in the following example using the
ActionScript method. You would probably include these method calls in a func-
tion that initializes the application, as in the example shown earlier.

181

LOADING METHODS SPECIFIC TO FLEX

These lines of code assign two event handlers that listen for the and events. Don’t forget
that you don’t need to use the function names and . You could use any
other name that seems appropriate.

Whichever approach you choose—either tag-based or using ActionScript 3.0—you’ll need to access
the content loaded by the request, and that’s the topic of the next section.

Accessing loaded content
Once a request has been successfully processed, you can access the response in the prop-
erty of the object.

You can work with this property in the event handler function, or you can bind the content
directly to another component.

Accessing the lastResult property directly
The following lines show how you might use a event handler function to access the loaded
content:

Notice that the function uses the object passed to the handler function. It addresses the
 property of this event, the object, and accesses the property.

If you’ve specified a of , you can use E4X expressions to target the content within
the loaded XML document. Treat the expression as the root node of the
XML document and build the expression from that point. You’ll see this expression in the examples
that follow.

You can also use the property in binding expressions to components.

Binding the lastResult property
Binding expressions with curly braces allows you to bind a property of a control directly to a value or
property from a loaded XML document. You can use an E4X expression to identify which part of the
document should be bound to the property of the target component.

The following example shows how you might bind a property within the property directly
to a target component property. The relevant binding expression appears in bold.

182

CHAPTER 6

This example binds the property from the response to the property of a control
using curly braces notation. The element is a child of the root element, which is equiva-
lent to . Whenever you work with a of , the
property is equivalent to the root element in the loaded XML content.

You can use much more complicated E4X expressions to target specific content. This might include
longer paths and even filters. You can find out more about E4X expressions in Chapter 4 of the book.

If you assign the loaded XML content to an ActionScript XML object first, you can still use curly braces
binding with properties of other controls. Before you do this, though, you need to make sure that the

 object is a bindable variable by adding the metatag above its declaration.

The following example creates an XML object called , which could be used in binding
expressions:

You can then populate this variable with XML content as part of the event handler function.

The object can then be bound to the target property with an E4X expression within curly braces,
as shown here:

The previous example would bind the within the nodes directly
to the property of the component.

Working through an <mx:HTTPService> tag
example

Let’s work through a simple example. You’ll create an application that uses the content from an XML
document to populate a ComboBox control. This example won’t use any scripting at all.

1. Create a new Flex project for the chapter. Add a new folder called to the folder.
Copy the resource file to this folder.

2. In the MXML application file, create an application with the following interface. Figure 6-1
shows how the application will appear when you switch to Design view in Flex Builder.

183

LOADING METHODS SPECIFIC TO FLEX

Figure 6-1. The <mx:HTTPService> tag example
application interface

This is a very simple application that contains two Label controls, a ComboBox control, and
a TextArea control. You’ll populate the ComboBox with the author names, and use the TextArea
to display messages and the loaded XML so you can keep track of the current content.

3. Add an tag above the element, as follows:

The code specifies the of so you can use E4X expressions to target the con-
tent in the XML file. Feel free to open this XML document if you want to see its structure. This
file is the same one we used for the Flex examples in the previous chapter.

4. The application will load the external document by calling the method of the
 element. It will do so in the event of the application.

Modify the tag, as shown here in bold:

After the application is created, the method will request the
document. The contents will be returned as an ActionScript 3.0 object, capable of being
accessed with E4X expressions.

5. You’ll bind the results returned from the to the control so you can see
what’s loaded. Modify the tag as shown here in bold:

The property of the TextArea control is bound to the property of the
 object. When the element receives a result, it will display in

the TextArea.

6. The example will also use a binding expression to populate the ComboBox control. Modify the
element as shown here in bold:

184

CHAPTER 6

The code sets the property of the ComboBox to an E4X expression. The element
targets the loaded content using the expression . This expression
is equivalent to the root element of the loaded XML document. The application can then
target the elements in the loaded content using the expression

.

7. Run the application from Flex Builder. Figure 6-2 shows how the completed application will
appear in a web browser. The loaded content appears in the TextArea, while the ComboBox
displays a list of all author last names.

Figure 6-2. The <mx:HTTPService> tag example
completed application

In this example, you populated the ComboBox control without using any scripting at all. You bound
the property of the ComboBox control directly to the loaded content from the

 tag using an E4X expression.

The expression returns an object made up
of the author last names. Notice that you didn’t need to specify the root node , as that
is equivalent to the property of the tag.

You can find my finished file saved as with the other resources for the chapter.
This simple example shows how easy it is to bind loaded external content directly to UI components
without the need for any scripting.

An alternative approach is to script the class.

Working through an HTTPService class example
The following exercise shows how you would script the same example as in the previous exercise.
In this approach, you’ll use a custom class to handle the loading. The advantage of a custom class is
that if you make it generic, you’ll be able to use the same class in different circumstances.

1. Start by creating the class file that will handle the loading and parsing of the external XML
content. Create a new ActionScript class file using File New ActionScript Class. Figure 6-3
shows the settings for this class.

185

LOADING METHODS SPECIFIC TO FLEX

Figure 6-3. The settings for the custom class file used in the exercise

I’ve set the package as and the class file name as .
Flex Builder will create the folder as the location for this file.

The class file contains the following code automatically generated by Flex Builder:

Don’t worry if Flex Builder has used a slightly different arrangement for the opening
curly braces.

2. Modify the class file to make it bindable by adding a metatag. This change makes
all public methods of the class file available for use in binding expressions in the application
file. Add the following line, shown in bold, above the class declaration:

186

CHAPTER 6

3. Add the following statements below the first line package declaration. These state-
ments reference the class files that you’ll need to use. They will also be added automatically as
you complete the class file.

4. Add the following private variable declarations underneath the class file declaration:

The first variable, , refers to the content loaded from the external
XML document. The code uses the name for the object. The

 object refers to the of child elements that will be returned from
the loaded content.

The will be used to populate the data provider of the ComboBox. However, it will
do so via an intermediate class. The application will use the object

 as a wrapper class when assigning the data provider. This class adds extra
functionality for applications working with an . Unlike an , it also tracks changes
made to any bound data, which makes it a better choice as a data provider.

5. Modify the constructor method to create the object and add an event listener to
handle the event. The new lines appear in bold in the following code block:

6. The application will call the method of the object in a public method
called . The application can then determine when to call this method, based on
when it is notified of the event. The method will receive the URL to use
in the request as an argument.

This public method starts by assigning the passed in URL as the property of the
object. It also sets the result format to . I’ve hard-coded the property in this case for
simplicity, although I could also have sent it in as an additional parameter. The function finishes
by calling the method of the class.

7. When a response is received from the request, the method will be called.
The listener was added in the constructor method, but we haven’t yet created the correspond-
ing function. Add this method now, as shown in the following code block:

187

LOADING METHODS SPECIFIC TO FLEX

The function is private because it will be used only by the class file. It starts by tracing the
loaded content, which acts as a debugging tool so you can check what has loaded. You should
remove this action before moving the application to its production environment.

The function assigns the elements to the object.
The application will use this to create an when the user wants to populate
the ComboBox. The final line dispatches a event indicating that the request has com-
pleted. The application can listen for this event and respond accordingly.

8. The custom class also needs to provide a public method that will supply the content to popu-
late the for the component. I’ll call this method ,
and it will provide the names of all authors as an object. Add the following
public method to the class file.

The method returns an of all of the
elements that were identified in the function. The application can call this
method to provide a data source for any data-aware component. In this application, that will
be the property of the ComboBox control.

The complete class file follows so that you can check your code to make sure that everything
is correct so far. The file exists in the folder in the folder of your project.

188

CHAPTER 6

9. Create a new application file for your project. Create an interface that contains a Label control
and a ComboBox component using the following code:

This interface is a simplified version of the one that appeared
in the previous example. Figure 6-4 shows how the interface
used in this example should appear when viewed in a web
browser.

10. Add a attribute to the element, as shown here in bold:

You’ll call the function when the interface has finished creating. This function will
set up the object within the application and request the content from
the external XML document.

11. Add the following script block to the application:

Figure 6-4. The scripted example
application interface

189

LOADING METHODS SPECIFIC TO FLEX

The code starts by importing the classes needed for the application. This includes ,
passed by the function; , to determine when the request has finished;
the custom class ; and the class, required for the
ComboBox data provider.

The code block declares a private variable for the object, called
. It also creates a variable called , which will be used as the
 for the ComboBox control.

The element includes the function, called when the interface has
finished creating. This function creates a new object and assigns a
event listener. It also calls the method of this object, passing the name of the
file to load. You’ll see an empty function below this one, which you’ll popu-
late a little later.

12. You’re now at the stage where you can debug the application to check that you’re correctly
loading the external XML document. Click the Debug button on the Flex Builder toolbar and
switch back to Flex Builder from the web browser. You should see the of all
elements in the Console view, as shown in Figure 6-5.

Figure 6-5. Debugging the scripted example application

13. Assuming everything is working so far, it’s time to populate the ComboBox control from the
loaded content. You’ll need to modify the function as shown in bold here:

The new line calls the public method of the object. The
 property is set to an object containing all of the child nodes

of each element.

14. Without a label function, the ComboBox control won’t be able to determine what to display
as the label. You need to create a for the ComboBox to specify which values
to display in the control and how they should appear. Add the following label function to the
code block:

190

CHAPTER 6

The function locates the and properties
from each item in the . It joins these values with a space between to create
the author’s full name, which will display as the label for the ComboBox control.

15. Assign the function as the property of the ComboBox by modi-
fying the function. Add the bold line shown in the following block:

16. That’s it for the application and class file. Run it from Flex Builder, and you should see the same
result as shown in Figure 6-6.

Figure 6-6. The scripted example
completed application

The ComboBox is populated with the first and last names of each author.

The complete application file follows if you want to check your code:

191

LOADING METHODS SPECIFIC TO FLEX

You can find the completed application files saved as and
 with the chapter resource files.

In the previous examples, you didn’t send any variables with the request. We’ll remedy that in the final
two examples.

Passing variables with the request
Earlier in the chapter, I showed you how to pass variables to the requested URL with the

 tag and class. One use might be to send a parameter to a server-side
file so that you can filter the content returned to the Flex application. You can also pass variables that
will be used for updating the external data source.

We’ll work through a simple example that sends a username and password to a server-side page. I’ll
show how to do this with both the element and the class. The inter-
face in both examples will include text fields that allow the users to enter their username and pass-
word, as well as a button to submit the details. You’ll also display a message from the requested file.

In this case, you’re going to work with a static XML document. This means that no matter what values
you pass with the request, you’ll see the same message from the XML document. In Chapter 9, you’ll
see how to integrate this approach with server-side pages. For now, these simple examples will get
you started.

Let’s begin by working with the tag.

Using <mx:request> to send variables
Earlier in the chapter, I showed you how to use the tag to send variables with an

 request. The following code provides a quick refresher:

192

CHAPTER 6

The element is nested inside the element and contains tags that use
the variable name to surround the variable value.

You’ll use this approach in the first of the final two examples, so let’s get started.

1. Create a new application file and name it anything that you like.

2. Create the following interface. Figure 6-7 shows how the interface should appear in the Design
view of Flex Builder.

Figure 6-7. The <mx:request> example
application interface

The interface consists of some labels, two TextInput controls, a Button component, and
a dynamic text field. The TextInput controls have the instance names and

, respectively. The Button is called and has the label Log in.
The dynamic text field has the instance name . The instance has its

 property set to .

3. Add the following tag above the opening component:

193

LOADING METHODS SPECIFIC TO FLEX

Notice that the code includes a closing tag, as you will add an element between
the opening and closing tags. The element specifies as the because the
application expects an XML format for the response. You will be able to extract the message
from this response using an E4X expression.

4. The entries from the user in the TextField controls will provide the variables that will be passed
in the element. Modify the tag as shown in bold here:

The change adds an element containing two variables: and
. The variables are bound to the property of the and

controls using curly braces notation.

5. The application will send the variables with the request when the Log in button is clicked.
The next step is to add a attribute to the Button to call the method of the

 object. Modify the Button as shown in bold in the following line:

6. The final step is to display the message in the TextArea component. The file con-
tains a single element, . The example will bind the text
inside this element to the TextArea. Modify the element as shown here in bold:

7. Run the application. Enter a username and password and click the Log in button. Figure 6-8
shows how the application should appear in a web browser. Notice that the message Login
successful appears in the TextArea.

Figure 6-8. The completed
<mx:request> example application

The complete code for the application follows in case you want to check your file:

194

CHAPTER 6

You can find my example saved as with the chapter resource files.

You can also take a scripted approach to sending variables by using the class.

Sending variables with the HTTPService class
In this final example for the chapter, you’ll achieve the same outcome as in the last example, but using
the class with a custom ActionScript class.

1. Use the File New ActionScript Class command to create a new ActionScript class. Add the
class to the package and call it . The file should con-
tain the following code:

2. Add the following statements underneath the package declaration. These statements
reference the classes that you’ll need to use. Note that these statements will also be added
automatically when you declare the variables and write additional code a little later.

3. Add a declaration above the class declaration. This declaration makes all public
methods and properties bindable in the application file.

195

LOADING METHODS SPECIFIC TO FLEX

4. Declare the following private variables below the class declaration:

The first variable, , will store the returned message from the document as
data. The second variable, , refers to the object that will make the
request.

5. Modify the constructor method as shown here:

The method creates the object and adds an
event listener that responds when the object receives a event. When this occurs, the

 will execute, processing the response.

6. Add the method shown here:

The method is private because it will be called only by the class file. The
method locates the message text by using the expression . As this
expression is equivalent to the root element of the loaded XML content, it will return the text
inside the root element .

The method assigns the loaded content to the variable , casting it as a .
It then dispatches the event to the application so that it will know that the request has
finished and that a result has been received.

7. The class file will need a public method that handles the request for the external file. I’ll call
the method . This method will receive two arguments: the name of the file to
request as well as the variables to send with that request.

The method creates a new object, using the URL passed in as
the first argument. The method assigns the argument to the property of the

 object and sets the property to the variables to the requested page. It
finishes by calling the method to make the request.

8. The class will need one public method to return the content from
the external document, which is stored in the variable .

196

CHAPTER 6

Add the following public method to the class file:

That’s it for the class file. Check your contents against the complete code block that follows.

9. Now you need to create a Flex application file containing the following interface. It is the same
interface as the one shown earlier in Figure 6-7.

197

LOADING METHODS SPECIFIC TO FLEX

10. The example will set up the application by calling a function in the attribute
of the element. This function is called , and it will set up the vari-
ables you’ll need, including a new object.

Modify the element as shown here in bold:

11. Add the following block, which includes the function:

This block starts by importing the relevant classes. If you forget to add
these classes, the statements should be added automatically when you enter the
remaining code.

The application needs the class, as this is the event type dispatched when the
interface finishes creating. It also imports the class to deal with the
event dispatched by the element. The last statement deals with the
custom class that you just created, .

The code then creates an object called . Next,
it declares the function, which receives a as an argument. This function
starts by creating a new instance of the class and then assigns the

 function to be called when the class finishes
requesting the external document and receives a result. At the moment, this function doesn’t
contain any code.

The function assigns an event listener to the instance. This listener responds to the
 event of the button with the function. The block also

contains an empty function.

198

CHAPTER 6

12. When the Log in button is clicked, the function needs to check that the username and pass-
word are filled in before calling the method of the
object. It does this by testing that the entries have a length greater than zero.

When the public method is called, the method call will pass the URL of the
document to load as well as an object containing the entered username and password.

Modify the function as shown here in bold:

The function starts by testing that the length of both the username and
password entries is greater than . If this is the case, the function creates a new
and assigns the and properties from the entries in the TextInput controls.
It then calls the method of the object, passing the
URL to request, , as well as the containing the variables.

If either of the TextInput controls has no text, the message You must enter both a
username and password before clicking the button displays in the TextArea at the bottom of the
interface.

13. The last step in building this application is to respond when a reply is received from the
 file. The application will display the reply in the TextArea control in

the function. Modify it as shown in bold here:

14. Now you’re ready to test the application. Run it and enter values for a username and pass-
word. When you click the button, you should see the TextArea update, as shown earlier in
Figure 6-8.

199

LOADING METHODS SPECIFIC TO FLEX

The complete code for the application file follows:

200

CHAPTER 6

You can find the resource files for this example with the other chapter resources, saved as
 and .

You could have modified the first class file that you created to achieve the same out-
come, instead of creating two separate custom classes. That approach provides much
more flexibility and allows you to create a useful class that you can reuse in different
situations. Why don’t you try to do that as an additional exercise? You could also see
what other changes you might make to increase the flexibility of this approach. Don’t
forget that you may also want to add some additional error handling to make the
class more robust.

Summary
This chapter covered the tag and the class and discussed their prop-
erties, methods, and events. We worked through both tag-based and scripted Flex examples to dem-
onstrate how to request and access external content. In the second pair of examples, we sent variables
with the request.

The next chapter covers some of the loading methods that are specific to Flash. We’ll be working
with the Flash data components, which are written in ActionScript 2.0. At the time of writing, these
components haven’t been rewritten in ActionScript 3.0, but it’s still useful to be aware of them and
the functionality they offer.

203

Chapter 7

In the previous chapter, I showed you some methods that you can use to load
external XML content in Flex. Specifically, we looked at the class and

 element. You saw how to work with both a tag-based and scripted
approach.

In this chapter, we will look at loading methods that are unique to Flash Professional,
which involve using the data components. Instead of writing ActionScript to work
with XML content, you can use the data components supplied with Flash Professional.
These components allow you to work visually with a minimum of ActionScript. You
drag the components into your movies and configure them using the Component
Inspector panel. This can speed up your development process, since you can include
XML content without needing to write a single line of ActionScript.

When working with the data components, you can use data binding to connect the
XML content from the directly to user interface (UI) components. You
configure the bindings visually through the Component Inspector, and Flash does the
hard work.

The data components were first released for ActionScript 2.0 and were never
upgraded to ActionScript 3.0. This means if you want to use the data components,
you’ll need to create an ActionScript 2.0 document.

In addition to configuring the components with the Component Inspector, you can
also script them. Again, because the components are built for ActionScript 2.0, you’ll
need to use that version of the language.

You can use ActionScript 2.0 to set all of the properties that are available through the
Component Inspector. This may be useful if you’re adding components to the Stage

LOADING METHODS SPECIFIC TO FLASH

204

CHAPTER 7

dynamically. However, scripting data binding between components can be a tricky proposition. You’ll
probably find it much easier to work with the Component Inspector—so much easier that I’m not going
to cover scripting at all.

There are some disadvantages to using the data components. First, you can use these components
only in Flash Player 7 and above. Another disadvantage is the size of the components. Adding data
components increases the size of your FLA files, often by 400KB to 500KB. Luckily, this size reduces
again when you compile your SWF file. In my experience, the components tend to add around 30KB
to 50KB to the size of the compiled SWF file.

In this chapter, I’ll show you how to use the XMLConnector component to load XML data into Flash.
We’ll load the same document that we’ve worked with in the past two chapters so you can compare
the approach. Note that Flash can’t update external data, so you would still need to use a server-side
file to update the external XML document. We’ll finish with a new example, creating a complete appli-
cation that allows you to add, edit, and delete XML data.

As with the techniques covered in the previous two chapters, the XMLConnector component uses a
request-response approach to load external content. The application must issue a request before it
can access the external content. If the external data changes, the server cannot initiate the process
and inform the application that something has changed.

If your application requires up-to-the-minute data, to avoid polling the server at regular intervals,
you may wish to use the class to create a real-time connection to XML content. When the
content changes, the server can notify the application, causing the content to refresh. This topic is
beyond the scope of the book.

You need to be aware that the data components are written for ActionScript 2.0, so you won’t be able
to use them with an ActionScript 3.0 document. For all the examples in this chapter, you’ll need to
create an ActionScript 2.0 Flash document first.

As with all loading of external content, you need to be mindful of the security restrictions of Flash
Player. At the time of writing, the latest version was Flash Player 10, and you can find out information
about Flash Player 10 security in Chapter 5 of this book.

You can download all of the resources for this chapter from . This
download includes the XML documents used for the examples as well as my completed files.

Understanding the AS 2.0 data components
Flash Professional includes a number of data components suitable for ActionScript 2.0 documents.
The advantage of these data components is that they simplify the process of loading and updating
external content. You don’t need to script them. Instead, you can use the Flash interface to configure
these components.

The components become available only after you create an ActionScript 2.0 Flash file in Flash
Professional. You can then find the data component in the Components panel, under the Data section,
as shown in Figure 7-1.

204

205

LOADING METHODS SPECIFIC TO FLASH

Figure 7-1. The Components panel showing the
Data section

You can see that there are several components and that some of them have strange names. Table 7-1
summarizes each of these components and explains their purpose.

Table 7-1. The AS 2.0 data components available with Flash Professional

Component Purpose

DataHolder Stores data and can be used to share information between other com-
ponents. Unlike the DataSet, it doesn’t track changes made by other
components.

DataSet Stores data that you can share with other components. The DataSet allows
you to keep track of modifications that you make using other compo-
nents. You can then notify external applications of the changes made
within Flash.

RDBMSResolver Sends changes in data to an external data source. It works with database
content.

WebServiceConnector Consumes SOAP web services. You’ll find out more about this component
in Chapter 11.

XMLConnector Connects to external XML documents. You can use the component to read
and write XML data. You can use the component with the DataSet and
XUpdateResolver components when you need to change external data
using a server-side page.

XUpdateResolver Creates XUpdate statements that describe changes made to your XML
data within Flash. You use this component with the DataSet component.

We’ll start by looking at the XMLConnector component.

205

206

CHAPTER 7

Understanding the XMLConnector
The XMLConnector component is an ActionScript 2.0 alternative to working with the XML class in
either ActionScript 2.0 or ActionScript 3.0. Instead of writing ActionScript to work with XML data, you
can use the XMLConnector. The component can send and/or receive XML content, in the same way as
the class. The most common use for the XMLConnector is to load an external XML docu-
ment and bind the data to other components.

You can use the XMLConnector component to bind data directly to other components. Instead of
writing ActionScript 3.0, you can configure the Component Inspector panel so that Flash automatically
adds information from the external XML document to the relevant components. You can even add
formatting during the binding process to control how the content displays in your movie.

If you choose to bind content directly to components, a user of your application won’t be able to
update the data in Flash. If the user needs to be able to update the content, you can track updates
to the XML content by including a DataSet component and an XUpdateResolver component. I’ll show
you this process in the final example in this chapter.

Displaying read-only XML content
If you are using Flash to display data from an external XML document, the process is simple. You load
the XML document into Flash using an XMLConnector component. You then bind the XML content
directly to one or more UI components. You can also bind the data through the DataHolder or DataSet
component, although this is less common. Figure 7-2 shows the process for displaying read-only XML
content in Flash.

Figure 7-2. Displaying read-only XML content with the XMLConnector component

Things become more complicated if you need Flash to track the changes made by users. The data
components can monitor these changes, but because Flash can’t modify external content, you’ll need
to send this content to a server-side page before you can update the external data source.

207

LOADING METHODS SPECIFIC TO FLASH

Displaying updatable XML data
If you want to be able to update the XML content, you’ll still use the XMLConnector to load the exter-
nal XML document. However, you’ll need to bind the XML data to a DataSet component first, and then
bind the DataSet to the other components.

The DataSet monitors changes made to the data within the other components. The DataSet can then
generate a list of all changes for an XUpdateResolver component. The role of the XUpdateResolver
is to convert the changes into statements for processing by a server-side file. Figure 7-3 shows
this process.

Figure 7-3. Displaying updatable XML content with the data components

Whichever process you use, you’ll need to start by adding an XMLConnector component and configur-
ing it with the Component Inspector. You should note that all of the security restrictions on external
data still apply to the XMLConnector component.

Configuring the XMLConnector
You can add an XMLConnector to your Flash movie by dragging it from the
Components panel. You would normally give it an instance name at this point. You
can place data components anywhere you like, as they have no visual appearance
in compiled Flash movies. Once you’ve added the component, you’ll see the icon
shown in Figure 7-4.

You can configure the settings for the XMLConnector in the Component Inspector.
This panel allows you to specify the location of the external XML document and
configure other settings, such as how to deal with whitespace.

 Figure 7-4. The
XMLConnector

component icon

208

CHAPTER 7

Using the Component Inspector
Once you’ve added an XMLConnector to your Flash movie, you’ll need to configure it with the
Component Inspector. Figure 7-5 shows the Component Inspector panel.

Figure 7-5. The Component
Inspector panel

The Component Inspector has three tabs that you’ll use to work with the XMLConnector. To start with,
you’ll need to configure the Parameters tab so that you can set the connection properties. Table 7-2
shows a summary of the parameters in this tab and their purpose.

Table 7-2. The properties listed in the Parameters tab of the Component Inspector

Parameter Purpose

The path to an external XML document. This setting does not
need to refer to a file ending with . You can enter the path
to a server-side file that results in an XML document. If you do
this, you must remember to include the full server path, as in

.

Determines whether you are sending, sending/receiving, or
receiving the XML data. These values correspond to the ,

, and methods of the ActionScript 2.0 class.

Determines whether whitespace is included in the XML document.
Note that this is set to by default.

Specifies whether to allow multiple connections. If you set this
property to , when you are triggering one XMLConnector,
further triggers are not possible.

Sets the behavior for invalid data parameters. If you set the
value to , the component won’t be triggered if you have any
invalid parameters.

209

LOADING METHODS SPECIFIC TO FLASH

Most of the time, you’ll need to configure only the first two settings: and .

After you’ve configured the parameters for the XMLConnector, you can import a sample XML docu-
ment into Flash so you can view the XML element and attribute structures. This gives you a visual
representation of the XML document structure and lists the names and data types of attributes and
elements. Flash refers to this representation as a schema. Bear in mind that this is not the same as an
XML schema.

Let’s see how to import an XML structure into Flash.

Creating a schema from an XML document
The Schema tab in the Component Inspector allows you to generate a schema from an existing XML
document. You choose a document with an extension, and Flash will find the names and data
types of each element and attribute.

If you’re using a static XML file instead of a server-side file that generates an XML stream, you can gen-
erate a schema from the document that you’re loading into Flash. You can also use a trimmed-down
version of the XML file, as long as it contains at least two data elements. Flash needs at least two ele-
ments to determine the structure of the XML document correctly. Note that you can’t load a schema
from a server-side file that results in an XML document; this time you need a static XML document.

Flash allows you to generate two different types of schemas from external XML documents: one called
 and the other . The type represents the structure of data being sent out

of Flash, while you use for the structure of incoming XML data. Figure 7-6 shows both options.

Figure 7-6. The Schema tab in
the Component Inspector panel

You can see the schema direction by looking at its arrow. The right arrow to the left of params indi-
cates that XML data is outgoing; the left arrow indicates incoming data for results.

To create a schema, select either params or results, click the Import a schema button at the right side of
the Schema tab, and navigate to the XML document. Once you’ve imported the document, Flash will
display the structure within the Schema tab.

210

CHAPTER 7

I’ve used the resource file to generate the structure shown in Figure 7-7. Open
the file if you want to see this structure.

Figure 7-7. The schema resulting from the
authorsAndBooks.xml file

The panel lists the name and data type of each element. In Figure 7-7, the root element shown is
. It has an data type. It contains several child elements, including and
. It also contains an array of elements. The element contains a number of

other elements. Attributes appear with an sign to the left.

Flash doesn’t maintain a link back to the XML document used to generate the results schema. If you
change the XML document, you’ll need to import the XML document again and regenerate the schema.
You may also need to change your data bindings. It’s not a good idea to use the XMLConnector com-
ponent if the structure of your XML document is likely to change regularly.

If you don’t have a sample XML document, you can create a schema in Flash manually.

211

LOADING METHODS SPECIFIC TO FLASH

Creating a schema by adding fields
While the usual method is to generate a schema by importing an existing XML document, it is pos-
sible for you to create the schema yourself. Select the parent element for your schema field and click
the Add a field button, as shown in Figure 7-8. If you’re adding the root element, you’ll need to select
either params or results first. For each subsequent element, you’ll need to click the parent and add
another field.

Figure 7-8. Click the Add a field
button to create a schema manually.

Flash will add a new field underneath the selected element. You can configure the field using the set-
tings at the bottom of the Schema tab. Of most importance are fields like the field name, data type,
required, and storage type. However, this option is far more difficult than importing a schema from a
sample XML document.

You can also use the Schema tab with other components. For example, if you’re binding the XML
data to a DataGrid component, you’ll use the Schema tab to set the details for each column of the
DataGrid. I’ll show you an example of this later in this chapter, in the “Putting it all together” section.

Understanding schema settings
Once you’ve created a schema for your XML document, you can configure the settings in the panel
at the bottom of the Schema tab. The panel will display the settings for whatever you’ve currently
selected. Figure 7-9 shows the settings for an item called .

Figure 7-9. The settings
for an Array field

You won’t often need to change the field properties within the Schema tab. However, in case you do,
Table 7-3 summarizes each setting and its purpose.

212

CHAPTER 7

Table 7-3. Schema element settings

Setting Description

field name Lists the name of the field.

data type Sets the data type for the field. You can choose from , , ,
, , , , , , ,

, , , or .

validation options Specifies the validation for the field contents; for example, the number of
characters within a field. This option is available only for the following
data types: , , , , and .

required Specifies whether the field is required.

read only Specifies whether the content can be updated through data binding.

kind Sets the kind of data at runtime. Select from none, AutoTrigger, Calculated,
or Data. You could use a Calculated kind to create a calculation based on other
field values.

kind options Specifies any additional settings associated with the kind setting.

formatter Details the name of a formatter to use when converting the field to a
type. Choose from Boolean, Compose String, Custom Formatter, Date, Rearrange
Fields, or Number Formatter.

formatter options Specifies any additional settings associated with the selected formatter.

encoder Sets the encoding for the data at runtime. Select from Boolean,
DataSetDeltaToXUpdateDelta, Date, DateToNumber, or Number.

encoder options Specifies any additional settings associated with the encoder.

default value Specifies the default setting when the data is undefined or when you add a
new item in Flash.

path An optional setting specifying a path expression for the data.

storage type The way data is stored. This setting relates to the data type chosen and is one of
the following values: simple, attribute, array, or complex. You shouldn’t need to
change this setting.

Once you’ve configured the parameters and added a schema, you need to trigger the XMLConnector
component to load the content. After you’ve done that, you can bind the XML data to other compo-
nents in your application.

213

LOADING METHODS SPECIFIC TO FLASH

Triggering the XMLConnector component
The code must trigger the XMLConnector component before it sends or loads an XML document. One
option is to trigger the XMLConnector in response to a button click. You can also trigger the compo-
nent when the Flash movie first loads.

Triggering requires a single line of ActionScript that you can either write yourself or generate by add-
ing a behavior. Whichever method you choose, you should give the XMLConnector an instance name
first. If you forget this step, Flash will prompt you for an instance name.

I’ll start by showing you how you can trigger the com-
ponent with a behavior. First, you’ll need to display the
Behaviors panel by using the Shift+F3 shortcut. Select
frame 1 of the layer that will contain the ActionScript.
You can also select a button instance. Click the plus sign
in the Behaviors panel, choose the Data category, and
select Trigger Data Source, as shown in Figure 7-10.

Flash will prompt you to select the component instance
to trigger, as shown in Figure 7-11. Choose the instance
and select whether you want a Relative or Absolute path.
I normally leave the default Relative option selected.
Click OK, and Flash will create a new behavior to trigger
the XMLConnector.

Flash adds the ActionScript that triggers the
XMLConnector. You’ll also be able to see the new
behavior in the panel. You can view the Actions panel
to see the code that Flash generates. The following
code block shows what was added:

The code to trigger the component is very simple. It
consists of the instance name of the XMLConnector
and the method. It also includes the word

. If you’re working on the main timeline, you can
remove without affecting the method.

The method creates a call to the XML docu-
ment specified in the Component Inspector. When it
completes the call, it broadcasts the event. You
can write ActionScript that responds to this event to
access the results from the loaded XML document.

Figure 7-10. Using a behavior to
trigger the XMLConnector

Figure 7-11. Selecting the XMLConnector
component instance

214

CHAPTER 7

Testing for a loaded XML document
To test whether an XML document has loaded, you’ll need to write ActionScript that accesses the
contents from the XMLConnector. You can use an event listener to listen for the event. The

 property of the XMLConnector contains the XML document, and you can use a
action to see the contents. Be careful not to mix up and —they mean very different
things. This code snippet shows an example of listening for the event:

This ActionScript 2.0 block creates a new object and sets the property to an anonymous func-
tion. If you’ve been working with ActionScript 3.0, you’ll notice that the ActionScript 2.0 method for
assigning event listeners is a little different.

The listener function traces the of the event target. The code assigns a listener for the
event using the method. Finally, it triggers the XMLConnector. Notice that I
needed to assign the event listener before triggering the component.

If you tested this code, you would see the XML document contents displayed in the Output panel.
The event listener passes the event object to the event handler function. The expression

 accesses the complete XML document tree.

Working through a loading example
Let’s work through an exercise that uses the XMLConnector to load an external XML document into
Flash. In this example, you’ll load the file into Flash using the XMLConnector
component. You’ll add some ActionScript to display the XML content within the Output panel.

1. Open Flash and create a new ActionScript 2.0 Flash File.

2. Rename Layer 1 as interface and add another layer called actions.

3. Drag an XMLConnector component to the interface layer. Position it off the Stage and give it
the instance name authors_xc.

4. Save the file as in the same folder as the XML document.

5. Select the XMLConnector and configure the Parameters tab in the Component Inspector as
shown in Figure 7-12. These settings will load the file .

Figure 7-12. The settings for the
Parameters tab

215

LOADING METHODS SPECIFIC TO FLASH

6. Click the Schema tab and import the file to create a schema. You should
see the structure of the document displayed in the tab. It’s quite complicated!

7. Click in frame 1 of the actions layer. If necessary, open the Behaviors panel using the Shift+F3
shortcut.

8. Add a new behavior to trigger the component. Click the plus sign in the Behaviors
panel, choose the Data category, and select Trigger Data Source.

9. Open the Actions panel with the F9 shortcut key and modify the code as shown here (the new
lines appear in bold):

The lines create a new listener called . The listener responds to the event
and displays the results of the XMLConnector component called .

10. Test the movie, and you should see the Output panel displaying the contents of
, as shown in Figure 7-13. You can also see my completed resource file

.

Figure 7-13. Tracing the results property of the XMLConnector

This simple exercise used the XMLConnector component to load XML content from the external file
. The application included ActionScript to display the XML tree so you could test

that the XML document loaded successfully.

After you load an XML document, you’ll probably bind the content to other components. You can
bind the XML directly to one or more components, or you can bind to a DataSet component first. In
the next section, I’ll show you how to bind directly to UI components.

Binding XML data directly to UI components
You use data binding to add the data from your XML document to one or more UI components. This
is done visually, through the Component Inspector. Visual data binding is much easier than writing
ActionScript 2.0 to populate the other components.

If you’ve worked with XML in ActionScript 2.0, you’ll be aware of how convoluted the code can
become when it comes to accessing content. Instead of looping through , you can con-
figure the bindings in the Bindings tab of the Component Inspector. For example, you can bind XML
directly to the of a ComboBox or List component.

216

CHAPTER 7

The Bindings tab of the Component Inspector determines how data is bound to another component.
You’ll need to bind from the XMLConnector to a data-aware component, such as a List, DataGrid, or
ComboBox.

You’ll need to set the direction for the binding. Bindings are often one way: the data will come out of
one component—the source—and go into another—the target. This is the case where you want to
display external data within Flash, without tracking updates. For example, the data could come out of
the XMLConnector component into a List or TextInput component.

Sometimes you’ll have a two-way binding between your components, especially where you want to
be able to update your content within Flash. In this case, the content in both components is synchro-
nized, regardless of which component makes the change. You’ll see an example of this later, when we
bind a DataSet component using two-way bindings in the “Putting it all together section.”

You need to add your bindings in the first frame of your Flash movie. They won’t work on components
that you add later in the timeline. The other restriction is that you can’t bind components in multiple
scenes in a Flash movie.

Data binding is a huge topic, and I won’t give it full coverage here, as that’s beyond the scope of this
book. Instead, I will show you some of the most important aspects so that you can create bindings
using the XMLConnector component.

Adding a binding
To add a binding, first select the component on the Stage and
display the Bindings tab in the Component Inspector. Click the Add
Binding button, which appears as a blue plus sign.

You’ll need to identify which property of the XMLConnector
results you want to bind. If you’re binding multiple values to a
data-aware component, you’ll usually choose an . You might
choose a property if you were binding directly to the
property of a TextInput component.

Select the relevant element from your schema and click OK. Make
sure that you’ve chosen the parent of any items that you want to
include within your data-aware component. Figure 7-14 shows
the selection of the . Choosing this element means I
can access the and elements.

As I’ve selected an element, I can bind the data to the
 of a data-aware component such as a List,

ComboBox, or DataGrid.

Once you’ve added the binding, you’ll see it displayed within the
Bindings tab, as shown in Figure 7-15. Notice that the path for the
binding uses a dot notation to drill down through the elements
in the structure, starting with , which is equivalent to the
root node of the XML document.

 Figure 7-14. Selecting a property
of the XMLConnector results for
binding

 Figure 7-15. A binding in the Bind-
ings tab

217

LOADING METHODS SPECIFIC TO FLASH

The example in Figure 7-15 demonstrates binding to the element in the element.
This element is part of the property of the XMLConnector component.

After you’ve added a binding, you’ll need to configure the other component involved in the binding,
or the target for the bound data.

Configuring the binding
You can use the Component Inspector to select a direction and a second component for the binding.
The direction—in or out—specifies whether the data is sent out of a component or received by a
component. You can also change the way that the bound data displays in the target component.

Table 7-4 summarizes each of the settings in the Bindings tab and explains their purpose.

Table 7-4. Settings for each binding

Setting Purpose

direction Specifies whether the binding sends data, receives it, or does both. Choose in,
out, or in/out.

bound to Specifies the other component or target for the binding.

formatter A formatter to change the display within the target component. The choices are
None, Boolean, Compose String, Custom Formatter, Date, Rearrange Fields, and
Number Formatter.

formatter options Lists the options available for the chosen formatter.

You’ll learn more about formatters in the next examples.

If you’re directly binding from an XMLConnector component to another component, you would set
the direction to out and select the target component instance. If you’ve chosen an element from
the , you’ll need to select a component capable of displaying more than one value, perhaps
a ComboBox component. You can then set the as the for the target component.
You could also bind to the property. You’ll see how both of these bindings work in the
upcoming examples in this chapter.

When you click in the bound to setting, a magnifying glass icon appears at the right of the field.
Click the icon to select the target component. Make sure that you have set an instance name for the
target first.

Figure 7-16 shows the Bound To dialog box. In Figure 7-16, I’ve selected a List component. Because
the List component has a property, I can select this property from the Schema
location section of the dialog box. A is an , so you can assign the from the
XMLConnector results.

218

CHAPTER 7

Figure 7-16. The Bound To settings

The arrows in the Bound To dialog box indicate which directions are available to each binding.
In Figure 7-16, the right arrow indicates that the XMLConnector can send data to the
of the component. Because the binding is one way, the List can’t add a new item to the

 component.

The location allows you to add a two-way binding. This means that selecting an item
in the component selects the same item in the XML data. You would use the item if
you were selecting multiple items in the UI component.

Click OK to set the binding. If you select the target component on the Stage, you’ll see that Flash has
added an equivalent binding in the Bindings tab.

If the data has more than one child element, you’ll assign all the children to the bound component. For
example, if you’ve bound an directly to the of a component, it will display a list of
all values from the , separated by commas. This is shown in a List component in Figure 7-17.

Figure 7-17. Without a formatter, the complete element displays in
the component.

You can add a formatter to the binding to choose which element displays in the target component.
For example, for the data in Figure 7-17, you could use a Rearrange Fields formatter to assign values
to the and properties of the List component. This would allow the List to display only
the name.

219

LOADING METHODS SPECIFIC TO FLASH

To make this clearer, let’s work through an example that binds the contents of the
 file directly to a List component. The example will use a formatter to display the full name of each

author.

Working through a binding example
You’ll use the file from the first exercise and bind the and
elements to a List component. If you didn’t complete the first exercise, you can use the starter file

.

1. Open either the starter file or your completed file from the first exercise.
Make sure the file is in the same folder as the file.

2. Drag a List component to the interface layer and size it appropriately in the Properties panel.
Give it the instance name author_list.

3. Select the XMLConnector component, display the Bindings tab in the Component Inspector, and
click the Add Binding button.

4. Select the array from the XMLConnector schema and click OK.

5. Select the binding and click the magnifying glass icon in the bound to setting and add a binding
to the of the component. Click OK to create the binding.

6. Change the binding direction to out.

7. Test the movie, and you’ll see the complete contact element displayed in the List component.
Your application should look like the image shown in Figure 7-17. You’ll need to add a format-
ter to display only the name.

8. Select the binding and choose the Rearrange Fields formatter. This formatter will allow the
application to select the and elements for the within
the list. It can also add a value at the same time.

9. Click the formatter options setting to show the magnifying glass icon. Click the icon and enter
the following settings. When you’ve finished, click OK to apply the settings.

The code sets the property of the List items to the author’s full name and the property
to the attribute. The code creates the full name by joining the
and elements with a space between. Notice that for the property,
you need to use angle brackets and place the expression between single quotes. You can just
use the field name when assigning the property.

10. Test the movie. You should see something similar to the screenshot in Figure 7-18. You can see
the completed file saved as in your resource files.

Figure 7-18. The List component showing the author’s full name from
the XML document

220

CHAPTER 7

In this exercise, you bound the data from an XMLConnector component directly to a List component.
The example used a Rearrange Fields formatter to display the author’s full name from two elements
within the loaded XML tree. It also assigned the attribute to the property.

The Rearrange Fields formatter transforms the content from the XMLConnector before
it displays in the target component, the List. Because it creates a new of objects
from the original in the XML tree, you can use it only with fields that are arrays—
in this example, the elements.

You create the new by using a template. You can refer to the original field by
using its name or, as you did in this example, by creating a string entry containing a
mix of text and fields. In this case, you had to write the field names as XML elements
with opening and closing angle brackets.

Your code needs to assign the template to a property on the bound component. In the
example, the code assigned the template to the property. It also assigned the

 attribute to the property of the List component.

You can extend the example so that when you click the name, the author’s details will display in other
components. You’ll do this by adding more bindings.

Extending the binding example
In this exercise, you’ll add multiple bindings so that when you choose an item from the List, the details
display in TextInput and TextArea components. If you didn’t complete the previous exercise, you can
use the starter file from the resources.

1. Open either the starter file or your completed file from the previ-
ous exercise. Again, the file should be in the same folder as .

2. Set up the interface as shown in Figure 7-19. I’ve called the books List component .
The year TextInput component has the instance name . The cost TextInput compo-
nent is named .

Figure 7-19. The Flash interface

221

LOADING METHODS SPECIFIC TO FLASH

3. Select the XMLConnector component and add a new binding to the element. Set the
direction to out and bind it to the property of the component. You’ll
see an additional setting at the bottom of the Bindings tab called Index for ‘author’ with a value
of 0. This setting shows which value from the array to display in the List component. The appli-
cation will bind this to the from the component.

4. Click the magnifying glass icon in the Index for ‘author’ setting to bring up the Bound Index
dialog box. Uncheck the Use constant value check box. Select the component and
choose the property. This tells the application that the values in the

 component depend on the item chosen from the component. Figure 7-20
shows the settings for the Bound Index dialog box.

Figure 7-20. The settings for the books binding

5. Test the movie and check that the component populates when you select an
author name from the List component. You’ll notice that the entire element displays,
so the example will need to use another formatter.

6. Add the Rearrange Fields formatter for this binding and add the following formatter option:

7. Test the movie again. You should see the book name in the component when you
select an item from the component.

8. You might notice that when the application first appears, the word undefined shows in the
 component. This entry occurs because no index is selected in the

component. You can fix this problem by removing the item after the XMLConnector finishes
loading. Modify the function on the actions layer as shown in bold here:

When you test the movie, you’ll see nothing in the component until you select an
item from the component.

222

CHAPTER 7

9. Add another binding to the book year as follows:

a. Select the XMLConnector component and add a binding to the element.

b. Set the direction to out and bind the data to the component.

c. You’ll see two Index settings, one for each List component. Set the Index for ‘author’ to the
 property of the component. Set the Index for ‘book’ to

the property of the component. Figure 7-21 shows the settings.

Figure 7-21. The Bindings settings for the
bookPublishYear binding

10. Add a similar binding for the element. In order to display the cost to two decimal
places, you’ll need to add a Number Formatter with a precision of 2 decimal places. Figure 7-22
shows the settings for this binding.

Figure 7-22. The Bindings settings for the bookCost
binding

223

LOADING METHODS SPECIFIC TO FLASH

11. Test the movie. You should be able to select an author and book, and see the publish year and
cost, as shown in Figure 7-23.

Figure 7-23. The completed application interface

You can find my completed example saved as with the chapter
resources.

In the previous examples, you’ve seen how easy it is to load XML content into an XMLConnector
component and bind it directly to one or more components. You created a very simple application
that displays details of an author’s books, without writing much ActionScript at all.

However, if you need to update the XML content, things become a lot more complex, as you need to
introduce other data components into the mix.

Using the DataSet component
You’ve seen how to bind XML data directly to other components. This approach works well if you
have data that you don’t need to update. However, if you want to make changes in Flash, you’ll need
to work with DataSet and XUpdateResolver components to keep track of your updates. Like the
XMLConnector, the DataSet has no visual appearance, which means you can place it anywhere in your
Flash movie.

You use the DataSet component to store and organize the data before you bind it to other
components. You can also use the DataSet to track changes that you make in the other components.
Remember that Flash can’t alter external content and requires server interaction for any updates, so
you’ll also need to send these updates to a server-side file for processing.

Once the updates are complete, the DataSet sends information about the updated data to an
XUpdateResolver component in a . The XUpdateResolver processes the and
generates an for use by server-side files.

224

CHAPTER 7

Creating bindings with a DataSet component
You’ll bind data from an XMLConnector component to a DataSet component. This is necessary so that
the DataSet can keep track of any changes made by other components.

The process is as follows:

1. Configure the XMLConnector.

2. Bind the XMLConnector to a DataSet.

3. Apply two-way bindings from the DataSet to the other components. The two-way bindings
ensure that the DataSet always contains the latest data.

4. Add bindings between the DataSet and XUpdateResolver.

You normally bind an property of the XMLConnector to the of the DataSet. There
are other properties that you can use for binding. In addition, you can bind to the —an
XML packet describing changes to the data. This binding tracks updates. You can also bind to the

 in the component or to the .

When you add bindings from the DataSet to other components, you must select an in/out direction
so that the components will inform the DataSet of any changes that a user makes. For list-based com-
ponents, you’ll need to bind both the and properties to synchronize the
DataSet and component.

You should also create fields in the schema of the DataSet so that the schema matches the exact
structure of the results from the XMLConnector component. If you don’t do this, the two components
won’t be identical, and you may have difficulty generating updates later on. Make sure that when you
specify the name and data type of the field they are the same as in the XMLConnector schema; that
way, you ensure that the two components contain exactly the same content. This is necessary so that
you’ll be able to update the data correctly.

To capture any changes made to the data, you’ll need to add an XUpdateResolver component that
binds to the DataSet component. This component keeps the data in Flash consistent with an external
data source. The resolver translates information about changes from a DataSet component into a
format that the external data source understands.

The relationship between the DataSet and XUpdateResolver is a little complicated. The DataSet
monitors any user changes in the components and stores them in a . When you’re
ready to process these changes, the DataSet sends the to the XUpdateResolver. The
resolver converts the into an that you can send to an XMLConnector.
This XMLConnector sends the to a server-side file where the updates are processed.
The server-side file returns an packet to the XMLConnector. This packet may contain
updated values for components, such as those from ID fields. Figure 7-24 shows the process, reading
from left to right.

The XUpdateResolver uses XUpdate statements to describe changes that you’ve made to the data. At
the time of writing, XUpdate was a working draft from the XML: DB Working Group. You can find out
more about XUpdate at e/.

225

LOADING METHODS SPECIFIC TO FLASH

Figure 7-24. The update process using a DataSet and XUpdateResolver

To make sure that you track all of the changes to your data, you’ll need to add two bindings: one for
the and one for the . The first binding occurs between the
of the DataSet and the of the . The is generated by the

 component to summarize changes made to the XML content. You’ll need to set the direction
to out for the and in for the XUpdateResolver. In other words, the DataSet sends the changes
in the to the XUpdateResolver component.

You’ll need to add another binding to the XUpdateResolver so that the is sent out to
a second XMLConnector. This XMLConnector sends the to a server-side file for pro-
cessing. The XMLConnector will also receive an packet from the server-side file after
processing. The server-side page can use the packet to send additional data to Flash,
such as the primary key values of new entries.

One crucial step in the process is setting the encoder for the XUpdateResolver in the
Schema tab of the Component Inspector. You’ll need to choose the DatasetDeltaToXUpdateDelta
encoder and specify the rowNodeKey in the encoder options. The rowNodeKey is an XPath statement
that identifies the path to the rows of data. It’s a little like the primary key for a database. The XPath
statement also contains a predicate that links the path to the relevant data in the DataSet.

The following code shows the structure of this setting:

The setting includes an XPath expression that identifies the path directly to the row node of the data.
The predicate, within square brackets, includes the key field from the schema, an equal sign, and the
key field from the DataSet, prefaced by a question mark. The DataSet key field name is usually the
same as the schema key field. The text to the right of the equal sign is surrounded by single quotes.
When Flash creates the , it will convert the single quotes to the entity .

It’s critical that you write this path correctly; otherwise, you won’t be able to generate the correct
XUpdate statements in your .

You need to trigger the DataSet to create the by calling the method. The
DataSet then generates the containing the changes to the data. The DataSet sends the

 to the XUpdateResolver, where the contents are converted into XUpdate statements and
added to an .

226

CHAPTER 7

The following code shows the structure of an :

The packet contains three different sections: one each for updates, deletions, and additions to the
data. These are the , , and nodes. You can
repeat each of these elements in the to reflect the multiple additions, updates, or
deletions from Flash.

As you can see, things get a lot more complicated when you include DataSet and XUpdateComponents
in your Flash movies. We’ll work through a detailed example so that you can see this process for
yourself.

Putting it all together
This section will put together everything this chapter has covered so far. You’ll create a simple applica-
tion to add, edit, and delete records in an address book. The application will use the XML document

, and you’ll use Flash to manage changes to the data. You’ll use a DataGrid component
and create multiple component bindings, and you’ll track the changes in a DataSet component.

The XML document is very simple and contains three records using the following structure:

This exercise won’t include the external updating of content, but you will see the XML content that
Flash provides to the server-side file. If you want to add server-side functionality, you’ll need to build
it yourself using a language like ColdFusion, PHP, or ASP.NET.

1. Open the starter file and add an XMLConnector component. It’s best to
keep the Flash file in the same folder as the file; otherwise, you’ll need to include
folder names in the path listed at step 2.

Figure 7-25 shows the interface. It consists of a DataGrid component, two TextInput compo-
nents, a TextArea, and three buttons.

227

LOADING METHODS SPECIFIC TO FLASH

Figure 7-25. The Flash interface for the address book application

I’ve set the property for the DataGrid component to , so you can modify
the data within each cell. You’ll use the TextInput components to add new entries, and click the
Delete selected button to delete the selected row from the DataGrid. You can process
the changes by clicking the Process changes button. The TextArea component will display the
XUpdate statements generated.

2. Drag an XMLConnector component into the Flash movie and configure it as shown in
Figure 7-26. Give it the instance name address_xc.

Figure 7-26. Configuring the
XMLConnector component

3. In the Schema tab of the Component Inspector, import a schema from the file .
Make sure you select results : XML first. Figure 7-27 shows the imported schema. It replicates
the structure from the XML document.

Figure 7-27. The schema created from
the file address_simple.xml

228

CHAPTER 7

4. Drag a DataSet component into your movie and give it the instance name address_ds.

5. Add a binding from the XMLConnector to the DataSet. Select the and bind it to
the of the DataSet. Make sure the direction is set to out.

6. Create a new layer called actions and add the following code line on frame 1:

The line triggers the XMLConnector to load the external XML document. If you test the
movie at this point, nothing will happen, because the DataSet isn’t yet bound to the DataGrid
component.

7. Add two bindings between the DataSet and DataGrid components. Both are in/out bindings.
The first should bind the , and the second should bind the . These
bindings will keep the DataSet and DataGrid synchronized. You should have three bindings now
for the DataSet.

8. The application will need to include component properties in the schema for the DataSet.
This will create the correct columns in the DataGrid component. Select the DataSet on the
Stage and click the Schema tab in the Component Inspector. Click the Add a component property
button, which is the plus sign on the far left.

9. Enter the field name contactID and make sure that you select the data type . Repeat the
process to add the contactName and contactPhone fields. These have data types. Make
sure that the names you use match the names of the elements in the schema. Figure 7-28
shows the completed Schema tab for the DataSet with the new component properties.

Figure 7-28. The Schema tab showing
the new component properties

10. Test the movie. You should see the DataGrid populated with data from the XML document.
Figure 7-29 shows the interface at this point. The order of the component properties dictates
the order of the columns in the DataGrid.

Figure 7-29. The Flash interface showing the populated DataGrid
component

229

LOADING METHODS SPECIFIC TO FLASH

At this point, the application has bound data from the XMLConnector to a DataSet, and then to
the of a DataGrid component. It also bound the of the DataSet
and DataGrid, so that both components always contain the same data. It’s critical that you
don’t forget to add the second binding.

11. Now you need to modify the DataGrid so that you can add new contacts, as well as edit and
delete existing entries. Add the following code to the actions layer. This code specifies what
happens when you click the Add button, which has the instance name .

The code block finds the new name and phone number from the data-input fields and adds
them to the of the DataGrid. This function will display the new entry in the
DataGrid. The of the DataGrid is bound to the of the DataSet, so
the DataSet will be updated with the new information.

12. Add the following block of code to the actions layer to configure the Delete button. When you
click this button, Flash will remove the selected row from the of the DataGrid.
Again, the binding to the DataSet ensures that Flash also updates the for the
DataSet.

13. Test the movie and check that you can add, edit, and delete data in the DataGrid. The
 column will be blank for new entries. This is because your server-side pages would

normally generate the or primary key field.

14. In order to track the changes to the data, the application needs to generate a
from the DataSet component. You’ll add an XUpdateResolver component to interpret
the from the DataSet component and create XUpdate statements. Drag an
XUpdateResolver component into your movie and name it address_rs.

15. Bind the from the XUpdateResolver to the of the DataSet compo-
nent. Set the direction to in so that the XUpdateResolver receives the delta packet from the
DataSet.

16. Display the Schema tab and select the from the XUpdateResolver component.
Change the encoder setting to DatasetDeltaToXUpdateDelta and enter the following path in the
encoder options field:

Figure 7-30 shows the settings.

230

CHAPTER 7

Figure 7-30. The Schema tab settings for the deltaPacket

This is a critical step. If you don’t add the correct path, you won’t generate the correct XUpdate
statements in the . The XPath statement identifies the child element of
the element and sets the child element to the value from the
field in the DataSet.

17. Add a second XMLConnector to your movie and name it sendChanges_xc. You will use this
XMLConnector to send the changes from Flash to server-side pages for updating. This example
doesn’t include configuration of this XMLConnector, since we don’t have any server-side pages
prepared. You may want to complete these pages yourself.

18. Add another binding to the XUpdateResolver. This time, the binding should send the
 from the XUpdateResolver to the component. You’ll notice

that you must select params when you add the binding, because the data will be sent out
of Flash.

19. The application still needs to generate the from the DataSet. It will need to
configure the Process changes button to call the method of the DataSet com-
ponent. Add the following code to your actions layer:

When you click the Process changes button, the DataSet will prepare the . Because
the DataSet is bound to the XUpdateResolver, that component will receive the
and generate an .

If you test the movie at this point, nothing will appear to happen, because you haven’t con-
figured the component. Normally, you would link this to a server-side file to
process the XUpdate statements. This exercise won’t do so, but you will set up another binding
to view the contents of the in the TextArea.

20. Add another binding to the XUpdateResolver component. The binding should send the
 to the property of the component. Set the direction to out.

By binding the to the property of the TextArea component, you’ll be able
to display the XUpdate statements in the TextArea.

21. Test the movie and make some additions, edits, and deletions to the data. Click the Process
changes button and check the contents of the TextArea. Here is some sample XUpdate content
that I generated:

231

LOADING METHODS SPECIFIC TO FLASH

In the XML packet shown here, I removed the contact with a of and added another entry.

That’s it for this exercise. You can see the completed application with
your chapter resource files. Apologies for the complexity of this final exercise, but as you can see, the
process of tracking changes with the data components is quite difficult.

In this chapter, we’ve used the Component Inspector to configure the data components in all of the
examples. It’s also possible to achieve the same functionality using ActionScript 2.0, but that’s beyond
the scope of this chapter. You may wish to look at this area yourself.

Data components can be a very useful way to include XML content in an application. If you’re writ-
ing an application that works with an XML source, using the XMLConnector component with data
binding provides a very quick way to populate the interface without writing much ActionScript at all.
Unfortunately, the ActionScript that you do write will be version 2.0. The only other alternative in
Flash is to write ActionScript 3.0 to load and parse the external XML source with the class,
as discussed in Chapter 5.

If you’re loading simple XML content and working with straightforward bindings, the data components
provide an excellent solution. However, if you need to monitor changes or write ActionScript to parse
the content manually, you’re better off sticking with an ActionScript 3.0 approach and avoiding the
data components altogether.

Summary
In this chapter, you’ve seen how to use the XMLConnector component to load an external XML docu-
ment into Flash. You’ve also learned how to bind XML data to other components. Binding data allows
you to associate part of a loaded XML document directly with a UI component. By using visual data
binding, you can avoid writing ActionScript 2.0 code to display the XML data in your movie.

We’ve completed exercises in this chapter that bind the data from the XMLConnector component
directly to one or more other components. I’ve also shown you how to bind the XMLConnector to
DataSet and XUpdateResolver components to keep track of changes and send them to a server-side
file for external processing.

In the next chapter, we’ll look at how you can modify XML content in both Flash and Flex.

233

Chapter 8

Congratulations for making it this far. As you worked your way through the book,
you’ve seen many different ways to load and access content inside Flash and Flex
applications. In the previous chapter, you even saw how to work with XML data using
data components and ActionScript 2.0 in Flash Professional.

This chapter describes how to update XML content in SWF applications by using
ActionScript 3.0. You’ll see how to change the values of elements as well as the struc-
ture of loaded XML content.

Earlier in the book, in Chapter 3, you learned about the properties, methods, and
events of the class. You saw that some of the methods can modify the struc-
ture of an object. In this chapter, we will look more closely at those methods.
Specifically, this chapter covers changing the values of nodes and attributes; adding,
duplicating, and deleting nodes; modifying namespaces; and changing element and
attribute names.

As with the other chapters, you can download the resource files from
.

Note that the XML structure changes made in the examples in this chapter won’t
affect any external data source. Within this chapter, the changes will occur only
within the SWF application that you create. In order to send modified content to the
server, you’ll need to use the approaches shown in the next chapter.

I think it helps you to work through the explanations in this chapter in Flash or Flex.
Before we get started, you might find it useful to set up your testing files.

MODIFYING XML CONTENT WITH
ACTIONSCRIPT 3.0

234

CHAPTER 8

Setting up the examples
Before we dive into the content of this chapter, let’s take a moment to set up the Flash and Flex appli-
cations for testing the code samples in the next few sections. As in previous chapters, I’ve used simple
procedural code for the Flash examples and class-based code for the Flex examples.

We’re using the file for these examples. It contains information about several authors
and the books that they’ve published.

Setting up the Flash examples
For the Flash examples, create a new Flash ActionScript 3.0 document and load the
document into an XML object called . You can use the following code to load the external
content into Flash:

You’ll replace the action in the function with the ActionScript lines shown
in the following examples.

Setting up the Flex examples
You can also work through the code samples with Flex Builder. Create a new Flex project and appli-
cation file with the names of your choosing. Create an folder in the folder of your Flex
project. Add the XML document to this folder.

For simplicity, use an element to load the XML content. Add this element to your application
file and set the property to the file as shown here:

Add the following attribute to the element:

234

235

MODIFYING XML CONTENT WITH ACTIONSCRIPT 3.0

Add the following code block:

You’ll add the code examples inside the function. Replace the
comment with the code that you want to test. Because we’ll be using statements, you’ll need
to debug rather than run the Flex application.

Let’s start by seeing how to change the values of elements and attributes.

Changing element and attribute values
You can change the values of elements and attributes easily. Bear in mind that when you make these
changes, you’ll be changing only the values within the SWF application. The changes won’t affect the
XML data source, so you won’t be updating an external XML document or database at the same time.

You update element and attribute values by first locating the relevant node or attribute and then
assigning the new value with an equal sign (). You can use E4X expressions, XML methods, or a mix of
both to create the path to the target element or attribute.

The process of assigning values is straightforward. However, you must remember that any expressions
that you construct must return a single XML element. You can’t assign a value to an expression that
returns an . In that case, you would be trying to assign a single value to more than one XML
element at the same time, and you would get an error.

To see how this approach works, we’ll change the name of the first author in the object from
 to . These values appear in the first element in the

 and elements. We can assign the new values to these elements
by using the following lines of code:

If we use a action to view the value of the first element, we should see the follow-
ing author name values:

We’ve successfully updated the text inside these two elements.

235

236

CHAPTER 8

It’s also possible to use the method to assign a new value to an element, as shown here:

The first argument to the method indicates what you’re replacing. Here, it’s the
element. The second argument provides the replacement content—in this case,

. You’ll notice that the second argument requires the opening and closing tags
to be included.

Using the method is obviously more cumbersome than adding a simple assignment that
uses an equal sign. However, this method allows you to specify a different element structure to use
as a replacement. It would be possible to replace the element with a completely
different set of elements.

You can also use the method to change an element name or completely
modify the XML structure of the specified element. This use of is covered in
the “Editing content” section later in the chapter.

Modifying attribute values is just as easy. For example, we can change the value of the
attribute of the first author using the following line:

Tracing the value of the first element shows the following content:

We’ve successfully changed the value of the attribute.

It is possible to change more than one value at a time by working through the entire collection. For
example, you could modify more than one element or attribute by looping through the collection and
treating each item individually.

For example, to add the number before each of the current attribute values, you could
use the following code:

This example uses a statement to iterate through all of the elements in the
object. You can then treat each individually. Because the code treats the elements sepa-
rately, each element is an object in its own right.

237

MODIFYING XML CONTENT WITH ACTIONSCRIPT 3.0

Tracing the XML tree for this example shows the following values for each of the elements:

The code changes all attributes to include the number at the start. Note that, unlike what is shown
in the preceding code block, the opening elements won’t all appear next to each other when you run
the example.

You can find all of these examples saved in the file and
with your other chapter resources.

Unfortunately, it’s not quite as easy to modify XML element and attribute structures. In the next sec-
tion, you’ll see how to use methods of the class to make changes to XML structures.

Adding, editing, and deleting XML content
Chapter 3 demonstrated how to use several of the methods of the class to modify the structure
of an existing object. I’ve summarized these methods in Table 8-1.

Table 8-1. Methods of the XML class for modifying XML content

Method Description

Adds the specified child node at the end of the child
nodes collection of the identified node

Makes a copy of an existing node

Inserts a new child node after the identified child node

Inserts a new child node before the specified child node

Adds the specified child node at the beginning of the child
nodes of the identified node

Replaces a specified property, perhaps an element or
attribute, with the provided value

Replaces children of an object with specified content

We’ll now work through each of these methods in a little more detail so you can see how they work. A
little later in the chapter, in the “Working through a modification example” section, you will use some
of the methods in a practical application.

We’ll start by examining the method.

238

CHAPTER 8

Using appendChild()
The method adds a new child node at the end of the current collection of child nodes.
It takes a single argument—the child to append—and adds it as the last child element. Here is an
example:

The code starts by creating a new object called . It then assigns the details of the new
node to this object, including the structure and values of elements and attributes. The last line of
the code calls the method from the root element . It passes the new
object to the method. Tracing the object shows that the new element is added as the last
child of the element. The end of the object follows:

The method can add the new child element at any point in the object. It doesn’t
need to refer to the root element. The following code block shows how to add a new child book to
the second element:

After running this code, the list of books by this author includes the following:

239

MODIFYING XML CONTENT WITH ACTIONSCRIPT 3.0

The new book appears last in the list of all books by this author.

Instead of creating the new element separately, you can also add it directly as an argument to the
 method. In the following example, the new XML element appears inside the call to

the method.

You can see that this approach produces some unwieldy code. My preference is to create the child
element separately, as it makes the code easier to read.

It’s also possible to set the child elements of the new object as properties using dot notation.
You can see this approach in the following example:

Instead of using XML structures, the code defines the child elements as properties. This approach
creates the same result, and you’ll use it in examples later in the chapter.

Using prependChild()
The method works in much the same way as , except that it adds the
new child element as the first child of the selected parent. Using this method moves all of the existing
child elements to a position one ahead of their original position.

We could use the same new element and add it as the first child with the following code:

If you add this example and trace the object, you’ll see the new element appearing as the
first child of the element. The existing elements appear afterward.

Copying a node
In the previous examples, we created the new node by assigning its value directly to an object.
You also saw that it’s possible to add the children with dot notation instead of writing them to the

 object.

Another approach is to use the method to duplicate an existing node. Once you’ve replicated
the structure, you can change the values and then insert the copied element using the
or method. Here’s an example of this approach:

240

CHAPTER 8

This example creates a new object by calling the method on the first book of the first
author. Any element would do here; it’s only the structure that interests us.

The next three lines assign the new values to the copied element structure. The final line calls
the method to add the new element as the first child of the element
for the second author. Running the code sample produces the same output that you saw earlier.

If you want to add a new element that has a complex structure, you’ll probably find that using the
 method will be quicker than the previous approaches. It is likely to take more work to cre-

ate the element structure and insert it with or than it is to copy the
structure and modify the values.

Inserting a child node
Both the and methods insert a new child node at a spe-
cific place in the object. You could use these methods to add a new child node at a position other
than as the first or last child. The difference between the two methods is obvious from their names.

The and methods take the same two arguments. The first
argument is the position at which to insert the new element. The second argument is the new child
element to insert. Here’s an example showing the method:

In this example, the code adds the new element after the second author. If you add the
code to the sample files, the new author will appear after and before

.

We could achieve the same result using the following method, as follows:

This example inserts a new element before the current third author. It will move the existing
third and later elements one position forward, so that the current third element becomes
the fourth and so on.

Using the method with any element at index is equivalent to using the
 method. It adds the new element as the first child.

Similarly, using the method and specifying the index of the last child element is
equivalent to using . It adds the new element as the last child.

241

MODIFYING XML CONTENT WITH ACTIONSCRIPT 3.0

Editing content
The method works a little differently from the other methods. It allows you to change the
structure of the XML content by replacing one XML element with entirely different content. It’s up to
you whether you preserve the existing XML structure.

The method takes two arguments. The first is the property to replace. You can express this
argument as the name of an element or attribute. It can also be provided as the index of a
child element. The second argument is the replacement content. You need to provide this argument
as an object.

You could use the method to replace the first element with a
element, as shown here:

Here, we’ve specified the first child of the object by providing the index . This number
equates to the first element in the object. Its replacement is an entirely new ele-
ment name.

The following example shows how to use a value for the element that will be replaced.

Here, the code replaces the first author’s element with an empty element. Running
the code and tracing the output produces the following change to the first author:

We could also replace the entire contents of the first element, as shown here:

The code uses the wildcard operator to specify that all children of the first element are to
be replaced. Running this example produces the following result, where there is a single child element
for this element:

However, you couldn’t use the following code to provide a replacement value:

242

CHAPTER 8

If you tried to use this code, you would get an error message indicating that the document markup
was not well-formed. This code is invalid because the replacement value is not a valid object.
Instead, it contains two elements that aren’t inside a single root element.

If the objective were to replace the and elements in the first
 element, you would need to use the following approach:

You could also add the first child only using the method, and then call the
method to add the second element afterward.

Using setChildren()
The method replaces all of the children of the specified element with the content
passed to the method. You can pass either an or object to the method.

This previous example:

is equivalent to the following line:

In the previous section’s example, you couldn’t pass an argument to the method.
That invalid example could be replaced with the following valid example:

Deleting an element
You can delete content by using the ActionScript operator. The following example removes
the first element from the object:

If you test this line, the first author in the XML tree becomes . All
elements move down one position.

Note that is not specifically a method of the object. Rather, it is an
ActionScript 3.0 operator that can be used in circumstances other than working with
XML content.

243

MODIFYING XML CONTENT WITH ACTIONSCRIPT 3.0

You can find the Flash and Flex examples saved as and
 respectively with the chapter resources. Don’t forget that you will need to debug the Flex appli-

cation to view the results of the actions in the examples.

Modifying element names and namespaces
One area that we haven’t yet touched on in any detail is how to make modifications to the names
of elements and attributes. We also haven’t looked at how you can make changes to namespaces.
Remember that a namespace associates an element with a particular URI. It allows you to ensure that
each element and attribute name in an XML document can be uniquely identified, even if you have
more than one with the same name.

Let’s start by looking at namespaces. The examples in this section use a slightly different XML docu-
ment, . Make sure you modify your code to load this file instead of . For
the Flex example, make sure you add the file to the folder in your Flex project as well.

Adding a namespace
You can add a namespace to an object using the method. The method receives
the namespace that you want to add as an argument. You provide the namespace either as a
object or as a object.

When you load the new XML file, you’ll see that the root element of the new object con-
tains two namespaces.

The following example shows how to add a third namespace to the root element:

The code starts by creating a new object with the prefix that references the URI
. It then uses the method to add the namespace attribute

to the root element.

After running this example, you should see the following root element:

The code adds the third namespace listed in this root element.

Adding a namespace to the root element means that it’s available to all other child elements. However,
you don’t need to add the namespace to the root element. You can add it anywhere in the XML docu-
ment tree, as shown here:

244

CHAPTER 8

This line of code would add the namespace to the element of the first author, indicating that
it is within that namespace:

It’s also possible to determine the namespace from an existing element and apply it to another
element. The author Saul Sorenson has the namespace in his

 element. You can see it in the following line:

In the next example, we’ll refer to this namespace and add it to the second element as well.

In this example, the object refers to the namespace prefixed with in the third element.
The code adds this namespace to the second element using the method.
Tracing the XML content shows the following opening element for the second author:

The namespace appears as a new namespace for this element.

Removing a namespace
You can remove a namespace from an existing element with the method. Let’s
see an example.

The root element of the file contains two namespaces, as shown here:

These elements have the prefixes and . We’ll remove the namespace prefixed with with the
following code:

Running the example and displaying the object shows only one namespace remaining in the root
element.

Again, you can remove the namespace from elements other than the root element. We can remove
the namespace declaration from the last element using the following code:

245

MODIFYING XML CONTENT WITH ACTIONSCRIPT 3.0

If you used this code and traced the object, this element would appear as follows:

The element doesn’t contain any namespaces.

Setting the namespace
The method sets the namespace associated with an object. You could use this to
apply the namespace from one object to another and set it as the default namespace. Consider
the following code block:

This block of code creates a new object called with some simple content. The second line
determines the namespace associated with the prefix in the object and stores it
in a object called . The third line calls the method of the object,
passing the namespace as an argument. When you view the modified XML tree for the
object, you see the following element:

The method adds the namespace to this object. It also sets as the default
namespace by adding the prefix to the root element .

Note that I had to use the method here to display the content, as
the object contains only simple content. If I used instead, I would
have seen only the text .

You can find all of these examples saved in the and
 files.

As well as working with namespaces, you can also change the names of elements and attributes. We’ll
continue working with the file for the next set of examples.

Changing the local element name
You can change a local element name or attribute using the method of the
object. You need to pass the new element name when calling this method. The method doesn’t
change the prefix in a qualified name.

We could use the following line of code to change the name of the root element of the
object to :

246

CHAPTER 8

Applying this code results in the following newly named root element:

In addition to the root element, you can also change the names of other elements farther down the
document tree. The following example changes the first author element name from to

:

Viewing the XML document tree shows that the element is renamed to , as shown in the
following line:

The method also works to change the name of attributes, as shown in the following
example:

Introducing this change rewrites the first element, as shown here:

Changing the qualified element name
You can also change the qualified name of an element or attribute using the method.
Again, the method receives a argument indicating the new name to use for the element. If you
apply this method to an unqualified element, the result is the same as applying the
method.

For example, the following line produces the same output as calling the method:

In both cases, you end up with the element , as shown here:

The difference between the and methods will be apparent with an exam-
ple that includes a namespace. The third author in the XML document, , has the
following opening element:

Notice that the element name is qualified with the prefix , which refers to the namespace
. We can change only the portion of the element name

with the method, as shown in these lines of code:

247

MODIFYING XML CONTENT WITH ACTIONSCRIPT 3.0

Notice that we needed to prefix the element with the namespace , as shown in the XML document.
We also needed to use the operator to indicate that the prefix belonged to the element.
Because this is the only element with the prefix, we referred to it using an index value of
: .

Running this example produces the following element for this author:

The prefix remains in the element, but the local name of the element is changed from to
.

If we use the method instead, we’ll see a different result. The following line of code uses
the method on the same element. Again, the element name is qualified with the prefix .

Applying this code, you should see the following change to the element:

The element is no longer qualified by the prefix . However, the namespace declaration remains.

These examples demonstrate that you should be very careful with the and
methods when working with qualified element names!

You can find all the examples referred to in this section saved in the files and
.

Now that we’ve covered the ways that you can modify an XML document, let’s work through an
example so you can see some of these concepts in action.

Working through a modification example
We’ll work through an example that demonstrates how to modify an XML tree structure. We’ll use the
resource file , which you’ve seen in other chapters.

In this example, we’ll load the contents of the document and display a list of authors in a ComboBox
and their books in an editable DataGrid. We’ll use the application to add, modify, and delete book
details for the selected author. We’ll use class methods to modify the object to keep it consis-
tent with the changes made in the interface.

In the Flash example, I’ll show a simplistic version, using procedural code. The Flex version uses
class files.

248

CHAPTER 8

Working in Flash
Here are the instructions to set up the Flash example:

1. Open the starter file in Flash. Figure 8-1 shows the interface. The appli-
cation will populate the ComboBox with authors from the loaded object. It will show the
books for each author in an editable DataGrid below the author name. A TextArea control will
show the contents of the object.

A user can add details of a new book, modify a row in the DataGrid, or select a row in the
DataGrid to delete a book.

Figure 8-1. The application interface

2. Create a new layer called actions. Open the Actions panel using the F9 shortcut and add the
following code to load the external XML document. If you’ve worked through the previous
exercises, there’s nothing new in this code, but I’ll explain it after the listing.

This script block starts by importing the class, which the application will use to
populate both the ComboBox and DataGrid controls. The code creates three objects. The
first is , which will store the complete XML tree from the loaded content. The sec-
ond object, , will populate the ComboBox. The third object, , will
store the books for each author and populate the DataGrid.

249

MODIFYING XML CONTENT WITH ACTIONSCRIPT 3.0

The code then creates a object called and a object called
. The requests the file and assumes that the XML

document is in the same folder as the Flash application.

The second-to-last line calls a function named to set up the application. You’ll
create this function in the next step. The code block finishes with a action.

3. The function sets up the application and loads the external XML document. Add the
following code at the bottom of the Actions panel. It contains two other functions, which I’ll
explain after the listing.

First, the function adds an event listener to the object. The listener
will respond when the loader dispatches the event by calling the function

. In other words, this handler function will process the loaded content to
make it available to the application.

The function also sets the property for the control so
that it can display the full name of each author. The function finishes by calling the
method of the object to request the external XML document.

The function receives an as an argument and uses the
 property of this object to locate the loaded data. The first line casts this data as an

 object, assigning it to the object. You need to do this because the content is
loaded as data.

The function creates an object containing the list of authors by targeting the
element in the XML document with the E4X expression . The third line of
the function sets the property for the ComboBox control to
this object. The for the ComboBox will format the appearance of the data
in the ComboBox. The final line displays a representation of the loaded XML content in
the TextArea component called .

The label function should be familiar to you from the earlier examples. It cre-
ates the full name by locating the first and last names of the author in the
and elements. It joins these elements with a space in between.

250

CHAPTER 8

4. At this point, the application has loaded the XML document and populated the ComboBox con-
trol. Test the movie and check that the external XML document loads successfully. Figure 8-2
shows how the interface should appear at this point. You should see the TextArea populated
with the loaded XML document and the ComboBox displaying the first author name, Alison
Ambrose.

Figure 8-2. Testing that the application loads the external XML document

5. The application now needs to load the books for the author displayed in the ComboBox. When
the application first starts, it will display the first author’s books in the DataGrid to match the
value initially shown in the ComboBox. When the user selects a different author, the books
shown will change. To accomplish this, the application needs to detect when the selection in
the ComboBox changes, and then locate the element for the selected author.

Add the following line to the function to detect a change in the ComboBox
component:

Each change in the selected value in the ComboBox calls the function. Add
the following function at the bottom of the Actions panel:

251

MODIFYING XML CONTENT WITH ACTIONSCRIPT 3.0

The function receives an as an argument. You can determine the
 from the of this event, which is the ComboBox control.

The function assigns the value of the ComboBox to the vari-
able. The number will be the same as the author index from the object, as both are
zero-based.

The function finishes by calling another function, , passing the value of the
 property. The function will populate the DataGrid component.

6. Add the function shown here to the actions layer:

Each time the user selects a new author, the function will locate that author’s
books and use them to populate the DataGrid.

This function starts by declaring a object called , which the application
will use to populate the DataGrid. It then locates the element using the E4X expression

. Notice that the E4X expression includes
the passed from the function.

The function sets the returned as the source for the
object. It then assigns the object to the object. Finally, the
object is assigned as the for the DataGrid.

7. If you tested the application now, you wouldn’t see any books populated initially. That’s because
you need to add another call to the function, which runs when the XML content
first loads. This call will allow you to see the first author’s books.

Add the line shown in bold to the function:

Once the content is loaded, the application will call the function, passing the first
author’s index of as an argument.

8. Test the application again and check that the books for the first author appear when the appli-
cation first loads. You also need to test that you can see other authors’ books when you change
the selection in the ComboBox.

Figure 8-3 shows the interface when the application first loads.

252

CHAPTER 8

Figure 8-3. Loading the DataGrid

9. The DataGrid doesn’t look too good. The column headings are the default field names,
and the book titles are cut off. You can fix the way it looks by calling another function,

, which formats the DataGrid’s appearance.

Add the following function call to the end of the function. The new line
appears in bold.

You also need to add the function to your actions layer.

253

MODIFYING XML CONTENT WITH ACTIONSCRIPT 3.0

The role of this function is to set column headings, widths, and assign which data field to dis-
play. This function starts by declaring the column headings for the DataGrid. It refers to each
column using its position in the collection.

The function then sets the and properties for each column. Feel free to
modify the settings to display more or less of each column.

The function finishes by making the first column read-only. The application needs to do this
because the users should not be able to change the field. Normally, that field would be
the primary key and would be allocated externally.

10. Test the application again. The DataGrid looks much better, as shown in Figure 8-4.

Figure 8-4. The DataGrid has been formatted.

11. The application has now set up the interface to display the data. The next step is to allow the
users to modify the books for each author. They will be able to add, edit, and delete book
information.

Let’s start by providing the functionality to add a new book. You’ll need to add a handler func-
tion that responds when the user clicks the Add book button.

Add the following line to the function:

This line adds an event listener that responds when a user clicks the button. You
also need to add the function shown here:

254

CHAPTER 8

This function responds to the click of the Add book button and receives a as an
argument. It starts by adding the user entries to three variables: , ,
and . The function also declares an object that will store the new XML
content.

The function checks that the user has entered values in each of the Name, Published year,
and Cost TextInput controls. If so, it uses the method of the DataGrid to add the
new entry. The code creates an object made up of name/value pairs and passes this object to
the method. Notice that the code uses the field name from the object, rather
than the column headings, to indicate where you want users to enter each new piece of
information.

After adding the new row, the function then creates a element for the
object. Notice that this element has one attribute that doesn’t have a value. Normally, you
would get the value from the database.

The function then assigns the , , and properties to the
 object. This approach provides a quick way to add the child elements to the

element.

The function finishes by using the method to add the object to the
 element of the selected author. Notice that you pass the

as the author index. Finally, the function displays the updated object in the TextArea
control.

Note that I haven’t provided any processing in case the user clicks the button without filling in
all of the TextInput controls. Feel free to add a text field and display a message to deal with this
situation.

255

MODIFYING XML CONTENT WITH ACTIONSCRIPT 3.0

12. Test the application again. You should be able to enter details of a new book and add it to the
DataGrid and object. Figure 8-5 shows an example of adding a new book to the author
Douglas Donaldson. As I mentioned, we didn’t create an ID for this book because that would
most likely be managed by the database.

Figure 8-5. Adding a new book

You can see that the new book appears at the bottom of the list of books for Douglas
Donaldson. It also appears as a new element in his list of all books. Because the code
uses the method, the book appears as the last child of the element.

13. Let’s see how to delete a book from the DataGrid and the object. The user will select a row
in the DataGrid and click the Delete selected book button. You’ll need to add a listener for the
click of this button.

Add the following line to the function:

This line adds an event listener that responds when the Delete selected book button is clicked.
Add the function now.

256

CHAPTER 8

This function receives a as an argument. It starts by declaring two variables: one
for the index of the selected book, called , and one for the index of the selected
author, called . It populates these variables with the properties
from each control.

The function checks to make sure that the user has selected a row in the DataGrid. In this case,
the property of the DataGrid will have a value other than .

If a row is selected, the function finds the selected book and author indices and uses the
 method of the DataGrid. It passes the index of the book to delete, which

corresponds to the index of the element in the .

Finally, the function uses the ActionScript 3.0 operator to remove the ele-
ment from the object. The code locates the relevant book with an E4X expression
that targets the relevant author and book indices. The function finishes by displaying a
representation of the object in the TextArea.

14. Test the application. You should be able to select a row in the and click the Remove
selected row button to remove the row. Check that the book has also been removed from the

 object by looking in the TextArea.

15. The last task is to allow users to modify the values in a row of the DataGrid. They can modify
anything except for the . In this case, the application is going to respond when the edit-
ing ends, which can be done with a . You’ll need to start by importing this class
with the following statement at the top of the Actions panel:

The application can now use a in the call. You’ll need to
add an event listener that responds when the editing of a cell finishes.

Add the next line to the function:

This line responds to , which occurs when the user finishes editing an individual
cell. The application will need to check if anything has changed, and if so, process the changes
to that value.

Add the handler function to the actions layer:

257

MODIFYING XML CONTENT WITH ACTIONSCRIPT 3.0

This function starts by declaring as a object and assigning the target of the
 to this object. The property refers to the DataGrid, but notice that

the code needed to use an statement to type it correctly.

The function identifies the being changed using the property and
assigns it to the variable . This value is a . The function also locates the row
and column of the edit using the and properties.

The declares variables for the old and changed values so the application
can compare the two. It will treat them both as variables, even if they contain numbers.
A data type is suitable, as all values will be treated as a in the object.

The function finds the original value by looking at the property for the
. This property gets the item renderer for the item being displayed in the cell.

The makes available a property called , which the function can use to find
the original value of the field. The function uses the expression .
The variable created earlier determines the field name to use.

The function finds the changed value by looking at the
 property of the DataGrid. This property returns a reference to the active

item editor after the user starts editing a cell. You can use it to locate changed values in
edited cells, as you can see in the line that assigns a value to the variable. The func-
tion passes the field name to the expression

.

Finally, the function compares the original and changed values, and calls the
function if these values are different. The application doesn’t need to respond if the values are
the same, because that means the user hasn’t made a change.

You have yet to create the function, but it will receive the name of the
, the being edited, and the variable.

16. You can’t test this functionality yet because no modifications are processed. Add the following
 function:

This function processes the changes to the cell value in the object. It starts by creating
a new variable that contains an made up of the field name and the new value.
The variable will contain something in the form of

. The field name can be taken from one of the three columns and can have only
the values of , , or .

The function then locates the relevant book element, finding which author is selected in the
ComboBox and using the number as the element index. It uses the
method to replace the entire existing element with the changed element, passing the
value that it created earlier.

This function finishes by displaying a string representation of the updated object in the
TextArea.

258

CHAPTER 8

17. Test the application again. You should be able to change the values in one of the DataGrid
cells and see it immediately update in the TextArea. Notice that each time you edit a cell, the
updates take place.

That’s it for the finished application. If you want to check what you’ve done, the complete code from
the actions layer follows:

259

MODIFYING XML CONTENT WITH ACTIONSCRIPT 3.0

260

CHAPTER 8

You can find the completed file saved as with the chapter
resources.

Working in Flex
Let’s see how you might work through the same example in Flex Builder. In this case, the application
will use a class-based approach.

1. Open the starter file in Flex Builder. You can copy the file and paste it
into your existing Flex project. The interface for the application, shown in Design view of Flex
Builder, appears in Figure 8-6.

Figure 8-6. The application interface in Design view

As with the Flash version of this example, you’ll populate the ComboBox with a list of authors
from the external XML document. When an author is selected, the application will show the
books for that author in the DataGrid component beneath the author name. It will show a

 representation of the object in the TextArea at the bottom of the interface. To the
right, TextInput controls allow a user to enter new book details.

261

MODIFYING XML CONTENT WITH ACTIONSCRIPT 3.0

2. If you’re using a new Flex project, create an folder inside the folder of the project.
Copy the file to this folder. The file contains the details of the authors
and their books.

3. You’ll load the XML document with the class that you created in Chapter 5.
The class exists in the package, so add a folder of that name to your Flex project.
Copy the file from the chapter resources to the folder.
You can also use the version that you created yourself in Chapter 5.

This class file handles the loading of the external XML file. It also returns a specified child ele-
ment from the XML object. However, you’ll need to modify the class file to add a little more
functionality for this example.

4. Because the XML file that you’re loading is complicated, you’re going to define the
element from the external file as its own object. This approach will allow you to work with
just that part of the XML document and make it easier to locate the element for each
author.

Add two new private variable declarations with the other declarations:

The first variable will store the name of the element to use as the new object root. In this
case, the new object will store the element information with all of its
child elements.

The application will pass in an additional parameter to the method to specify the
child element to use for the new object root. Modify the function as shown in bold here.
It will assign the new parameter to the variable.

You also need to modify the private method as shown in bold:

The new line assigns the XML content from the specified child element to the object.
Because the method actually returns an object, the code needs to cast it as
an object so there isn’t a type mismatch.

262

CHAPTER 8

The class file needs a new public method to return the object to the calling application.
Add the following method:

The final change to the class file is to modify the public method to find
a child of the object instead of the element. Change the first line as
shown here in bold:

The complete class file follows in case you want to check that you’ve included all of the
changes correctly:

263

MODIFYING XML CONTENT WITH ACTIONSCRIPT 3.0

You’ll make further changes to this class as part of building this example, so leave the file open
in Flex Builder.

5. You need to initialize the application and call the method of our custom class to
load the external document into the application. Switch to the file
and add the following code, including the function, to an block at the
top of the file:

This code starts by importing the classes that the application needs, including the
, the custom class , and the class. The
 wrapper class will work with objects returned from

the custom class. As you saw earlier in the book, this class provides additional functionality to
an object and is suitable as a for list-based components.

The code block then declares a private variable, , which is an instance of the cus-
tom class. The code block includes the function, which creates a new instance of
the class and assigns an event listener to respond to the event.

The function also calls the method of the custom class, passing the external XML
document file name and target element name.

I’ve included the function signature for the function without any code.
You’ll need to call this function in the attribute of the
element as shown in bold in the following code, so make the change in your own file.

6. You’ll modify the function to display the author names in the ComboBox
control. The code will call the method of the custom class to return an

 containing all of the elements. It will assign this object as the
 property for the ComboBox.

264

CHAPTER 8

The function will also populate the TextArea with a representation
of the loaded object. The application will use this TextArea control to keep track of the
current contents of the object.

Add the following lines to the function:

The first line sets the property of the ComboBox to the
returned by the method of the class.

As the full name doesn’t appear in a single element in the , the application will
need to use a in the ComboBox control to display this value. You’ve seen this
function earlier in the book. Add it to the block.

The function joins the author’s first and last names with a space in between to create a full name.

You also need to assign the function to the ComboBox so it knows how to
create the label. Modify the function as shown here in bold to assign it as the

 property.

7. Test the movie and check that the ComboBox populates correctly with the full name of each
author. Figure 8-7 shows how the interface should appear if you run the application and view
it in a web browser.

Figure 8-7. The ComboBox populates from the external XML
document.

265

MODIFYING XML CONTENT WITH ACTIONSCRIPT 3.0

8. Now it’s time to load the books for the author selected in the ComboBox. When the applica-
tion first loads, it should show the books for the first author.

The class file needs a public method that returns the element for the selected author.
Switch to the custom class file and add the following public method:

This method takes as its only argument the selected author index from the ComboBox. This
value equates to the index of the element in the object.

The method creates an called from the list of all elements
for the current author. It does this using the E4X expression

. The method then creates an
from this object and returns it to be used as the property for the
DataGrid.

9. The application file calls this public method in two places. First, it calls the method after the
ComboBox is loaded so the application can display the first author’s books. It also calls the
method in response to a change in the of the ComboBox so that the applica-
tion can repopulate the DataGrid with the correct books.

Switch to the application file and add the following line to the function:

This line calls the public method when the application initializes, passing the
first author index of . It sets the returned as the for
the DataGrid, showing the books for the first author whose name displays in the ComboBox.

For the second method call, add the following line to the function:

Whenever the author chosen in the ComboBox changes, the application will call the
 function.

Now, you need to add the function. Add the following code block to your
application file:

The function again sets the property for the DataGrid by
calling the public method of the object. This time, it passes the

 from the ComboBox to specify which element to target. It finds
the correct author using .

10. You need to set up the DataGrid to display the columns correctly before testing the application.
If you tested the application now, you would see only the displayed in the DataGrid; the
remaining information wouldn’t appear.

266

CHAPTER 8

The easiest way to modify the setup of the DataGrid is within the MXML element itself. Modify
the element as shown here. Notice that you need to rewrite the element with
a closing tag.

The element includes the list of all columns to display inside the
element. Each column contains a , , and attribute. The
determines which element to display from the , and the value equates to the
name of a child element. Notice that the expression uses an sign to indicate that is an
attribute.

The first element also sets the first column to be read-only so that the
user can’t edit the value. Normally, this value would equate to the primary key in the
data source and would be maintained externally. Because the element contains
the attribute , it will be possible for a user to edit all other columns.

11. Test the application again. You should see the book information displaying correctly in the
DataGrid, as shown in Figure 8-8.

Figure 8-8. The DataGrid synchronizes with the selected author.

267

MODIFYING XML CONTENT WITH ACTIONSCRIPT 3.0

Now that the interface is set up, it’s time to look at adding, editing, and deleting book informa-
tion. Remember that the application will change only the object in the SWF application,
and not in the external document, as Flex isn’t capable of updating external content.

When you finish building this application, the class file will contain public methods that add,
edit, and delete elements from the object. The application file will call these meth-
ods to process the updates made in the interface. Before it continues, it will need to know that
the updates have been completed. Each of the public methods must dispatch an event to the
application, notifying it that this has occurred.

After the application receives this event, it can refresh the for the DataGrid and
display the updated object in the TextArea control. This process must occur with every
type of modification made in the interface.

12. You’ll create a new event in the class file to be dispatched when changes have been completed.
This event is called , and you’ll create a handler function in the application file to
respond when it is notified of the event.

Switch to the custom class file . Declare the event by adding the follow-
ing metadata tag above the class declaration:

This is an event called with an type. In this case, the application doesn’t need
a custom object, because you’re not passing information with the event. The metadata
tag needs to declare this event so that the application file will recognize it correctly.

13. Switch to the application file and add a handler for this new event in the function,
as shown here:

Whenever the application file is notified of the event, it will call the
 function. Add the function that follows to

the block:

This handler function sets the property for the control, which effec-
tively refreshes the content in the DataGrid. It also displays a representation of the
object in the TextArea component so that you can see the updated content. You’ll want to
repeat these steps every time a user changes book details.

14. Now it’s time to add more functionality so that a user can make modifications to the books.
You’ll start by seeing how to add a new book to the currently selected author.

You need an event handler that responds when a user clicks the Add book button. Add the fol-
lowing line to the function:

268

CHAPTER 8

You also need to add the function to the block. The function
follows. Note that it references a public method of a custom class, , that you have
yet to create.

The function receives a as an argument. The function declares
variables for each of the user entries and checks that the user entered a value for each one. If
this is the case, the function calls the method of the instance, passing
the selected author index as well as the new values. You’ll set up this public method next.

I didn’t add any functionality to deal with the situation where a user doesn’t enter all of the
information for a book and then clicks the button. Feel free to extend this example to display
an error message in the interface when this occurs.

15. Switch to the class file. Add the following public method to
process the new book details:

This method receives the from the ComboBox and the new book values as
parameters. The is called , and this value corresponds with the
node index for the element in the object.

The method declares a new local object called and populates
it with a element containing an empty attribute. It then adds the ,

, and properties to this object. Notice that, instead of using
, you’ve used dot notation to speed up the process.

This method finishes by using the method to add the newly created
element as the last child of the current author’s element. In the last line, the method
finishes by dispatching an event to inform the application that the updating of the

 object is complete. The application will then respond by calling the
function.

269

MODIFYING XML CONTENT WITH ACTIONSCRIPT 3.0

16. Test the application and enter a new book. The application should add the new book to the
selected author, updating both the DataGrid and TextArea. Figure 8-9 shows a new book added
to the author Douglas Donaldson. It appears in both the XML tree in the TextArea and as a new
row at the bottom of the DataGrid.

Figure 8-9. Adding a new book

17. You’ll now add functionality so that a user can delete a book from the DataGrid and object.
By selecting a row and clicking the Delete selected book button, a user can remove a book. Start
by adding an event listener to respond when the Delete selected book button is clicked.

Add the following line to the function in the MXML file:

Add the following function to the block. This method
calls a public method from the class file that you’ll add shortly.

The function receives a as an argument and declares two
variables: one for the selected DataGrid row index, called , and one for the selected
author index, called . It assigns values for these variables.

The function then checks that the user has selected a row in the DataGrid. If no row is selected,
the will have a value of .

270

CHAPTER 8

The function finishes by calling the public method of the object
to carry out the deletion. It passes both the and so that the public
method will be able to locate the correct element.

18. Switch to the class file. Add the following public method to
handle the book deletion:

This public method uses the ActionScript 3.0 operator to remove the relevant
element. It locates the correct element with the E4X expression

. The method then dispatches the
event to notify the application that the updates are finished.

19. Test the application and make sure that you can remove a row from the DataGrid. If you look
at the TextArea control, you should see that the element has been removed from the
object as well.

20. The final task is to allow the user to edit entries in the DataGrid. A user will be able to modify
any value except for the . As I’ve noted, that value is usually allocated by the external
data source.

As with the Flash example, the application will handle when the editing of an individual cell
ends by responding to a . The updating will happen immediately after each
cell has been edited.

Switch to the application file. Import the class with the following state-
ment. Add it with the other statements at the top of the block.

Add the following event listener to the function:

The application responds when the user finishes editing a cell by referencing .
This value indicates that the editing of a cell is ending, and it will allow the application to
capture both the starting and ending values.

Add the following function to process the changes to the cell value:

271

MODIFYING XML CONTENT WITH ACTIONSCRIPT 3.0

This function calls a public method, , which you have yet to add to the
class file. It starts by declaring an object for the DataGrid and locating it with the expression

. The code uses to type the object correctly as a .

The function identifies the being modified as well as the row and column being
changed. It also declares variables for the original and changed values so that they can be
compared to see if a change actually took place.

If the values are not the same—that is, something has been modified—the
function calls the public method of the object. It passes
the name of the field being edited; the row number in the DataGrid, which will equate to
the node index; and the new value entered by the user.

21. Switch to the class file and add the method shown here:

This public method creates a new variable that contains the changed value, formatted as
an XML element. It uses the value passed from the MXML file for the element name.
It will produce a variable containing the structure .

The method then uses an E4X expression to locate the relevant
element being edited. In the expression

, the indicates which element to target; the
 indicates the index to use. The function uses the method to

update the existing element and replace it with the provide content. Finally, the func-
tion dispatches the event so that the application can refresh the interface.

22. Test the application and check that you can edit the name, publish year, and cost of each
item. Also make sure that the contents of the TextArea control are updated with each of your
changes.

272

CHAPTER 8

Congratulations! You’ve now completed the Flex application. The complete
class file follows so you can check your work. The file is also included with the chapter resources.

273

MODIFYING XML CONTENT WITH ACTIONSCRIPT 3.0

The complete application file follows. It is also saved as with the
chapter resources.

274

CHAPTER 8

275

MODIFYING XML CONTENT WITH ACTIONSCRIPT 3.0

276

CHAPTER 8

Before we finish, there are some points to consider from these examples.

Points to note about the example
There are several points to note about these exercises:

The example changes only the structure and content of the object within the SWF applica-
tion. It doesn’t update the external file. Neither Flash nor Flex has the ability to update external
content for obvious security reasons. You would need some server-side code to carry out the
updates. You’ll see how to communicate with the server in the next chapter.

In both versions of the application, if a user clicked a button inappropriately, we didn’t display
an error message. As an exercise, you might want to add this functionality to the application.

There is no validation of the new or changed entries made by the user. In a real-world applica-
tion, you would handle the user entries a little more robustly. For example, you would check
that the new value entered in the year field was an appropriate number. You would also
check that the price was a numeric value, and format it to display as a with two decimal
places. I’ll leave those niceties up to you as an area for self-study.

There are other ways that you could have created the Flex application. Flex provides data bind-
ing opportunities that may have made it easier to keep the object synchronized with a
DataGrid and a TextArea control. However, the aim of this exercise was to show
you how to modify XML content within Flex, so that’s what we did! Feel free to tackle the job
of modifying the example yourself if you wish.

277

MODIFYING XML CONTENT WITH ACTIONSCRIPT 3.0

Summary
In this chapter, I’ve shown you how to update the contents of an object. You’ve seen how to add,
edit, and delete XML content, as well as how to modify element names and namespaces. We worked
through an example that demonstrated how you might modify an XML tree with ActionScript 3.0. You
saw how to do so in Flash and Flex, using both a procedural and class-based approach.

While it was possible to update the content within the SWF application, your updates didn’t affect
the external content. You would need the SWF application to communicate with the server where the
updates would be processed. Communicating with the server is the topic of the next chapter.

279

Chapter 9

COMMUNICATING WITH THE SERVER

So far in this book, you’ve seen how to work with XML content in both Flash and
Flex. We started by examining the new class. We’ve loaded external static XML
documents and learned how to use a SWF application to make modifications to an

 object.

In this chapter, we’ll focus on the interaction between the SWF and server-side files.
The server-side logic is provided by an application server and a server-side language
like PHP, VB .NET, or ColdFusion. The SWF application needs to request a page writ-
ten in one of these languages and send variables for processing. The variables may be
sent so that the server-side page can update the data source. They may also be sent
so that the server-side page can do some processing and send a response.

The examples in this chapter won’t use Flash or Flex to update an external source of
data. Instead, you’ll see how to send variables that are processed by a server-side page
using the class in Flash and Flex applications. You’ll also see how a SWF
application can receive a response and incorporate that in the Flash or Flex applica-
tion. Additionally, we’ll cover how to use the tag and
class in Flex applications to send variables to a server-side page and incorporate the
server response in the application.

We’ll work through several examples to demonstrate how you can achieve these
aims. These examples use VB .NET, but I’ve provided alternative copies of the file
written in PHP and ColdFusion, if you prefer working in those languages.

As always, you can find the examples for this chapter at
. You’ll need to work with an application server to complete the examples. This

could be the .NET Framework, or an Apache or ColdFusion server.

280

CHAPTER 9

You can run the examples on your own computer or copy the finished code to a public web server. I
won’t go through how to set up an application server on your local machine, so you’ll need to work
through that process yourself.

Don’t forget that loading external data in still governed by the Flash Player security rules. Basically, you
can’t load data from a different domain without some type of intervention. If you want to find out
more about these rules, see the section about Flash Player 10 security in Chapter 5.

Let’s get started with an overview of the process. This way, you will understand what’s really happening
when you exchange data between a web browser and application server.

Sending data to the server
For security reasons, you can’t use Flex to carry out server-based tasks such as sending e-mail, deleting
or modifying files, or updating databases. However, both a Flash and Flex application can send variables
to an application server so that it can carry out the processing on behalf of the SWF application.

A SWF application might send variables to filter the results of a database query or have the variables
processed by the server-side file in some way. Processing could include generating an e-mail from the
values entered into the SWF file or saving them to a text file. The SWF application may also be sending
values that need to be updated in a database or a static XML document.

The class provides a mechanism for sending variables when the application requests a
server-side page. This class is available to all SWF applications, whether they are created in Flash or
Flex. The tag and class achieve the same result and are both available
to SWF applications created in Flex. In this chapter, you’ll see how to use all of these approaches to
send content from a SWF file to be processed by a server-side file.

Before we see the ActionScript code that you’ll need to use, we need to cover the following areas:

How to structure the path to the server-side file

How to choose an HTTP method to use to send the variables

How to choose a content type for the variables being sent

We’ll cover each of these areas in turn, starting with creating the path to the server-side file.

Structuring the file path
One of the most important points to remember is that when you specify the URL for the

 element, class, or class, you must make sure that you
include the full server path. Instead of writing just the file name, you need to include the address of
the web server, starting with the portion, as shown here:

This path is necessary so that the application server knows that it is dealing with a file containing
server-side code. Without the full path, the web server won’t know to process server-side code in the
page, and will treat it as a text file.

280

281

COMMUNICATING WITH THE SERVER

In the case of a object, you might structure the code to work with the full path as follows:

This example references the application server using . This path is very common
when working with an application server installed on a local desktop computer. The part of
the path in the code sample usually corresponds to the name of the folder containing your application
files. In this example, the application files live in a folder called on the local machine.

When you move the application to its production environment, the URL will usually change to the
domain name associated with the site. You don’t usually include the folder name for the files on
the web server. A production URL might look like the following:

The code used by the object in this case might look like this:

Because you need to switch the path when moving to a development environment, it’s good prac-
tice to set a variable that specifies this path. You can then refer to this variable throughout your
application. You can see how you might take this approach with the class in the following
code block:

When you need to move the site to its production environment, you can change the value of the
 variable to update the application.

Using this approach makes it much easier to manage the location of the server-side files in your appli-
cation. When you set a variable for the server path, it means that you need to make a change in only
one place to update the entire application.

Next, let’s see how you can actually send the variables from a SWF application to a server-side file.

Sending the variables
You have choices about both the method and format to use when sending variables from a SWF appli-
cation to an application server. The method refers to the HTTP method; the format refers to how the
variables are structured.

281

282

CHAPTER 9

Choosing a method
You send variables from one web page to another using the Hypertext Transfer Protocol (HTTP). This
is the standard way to transfer variables from a web page to a web or application server. You’ll notice
that the address of all web pages starts with the letters , indicating that they use this protocol
for communication.

HTTP provides for eight different ways to communicate: , , , , , , ,
and . and are the most common methods, and the class allows you to
work with both. The class and element allow you to work with the

, , , , , and methods. We’ll focus on and , reviewing
how they work and the difference between the two.

The method requests a resource from the web server. It is intended only for retrieving information
from the web server. In itself, it doesn’t cause changes to the web server. It’s possible to send variables
with the method when requesting data from the server, but any variables that you do send will
be available in clear text to anyone viewing the page URL. The method isn’t suitable for sending
large amounts of data.

The method submits data that will be processed on the server. The variables that you send are
included when you make the request. The method is usually used when you submit a form con-
taining data to the server.

So, which method should you use when working with SWF applications? You should use the
method when you want to send variables that filter the data returned by the application server. You
should use the method when you are sending variables that will update the content through the
application server.

You don’t need to explicitly set the method for the , element or
 class, as it is the default value. You need to add the property to your application

only if you want to use the method.

The following code block shows how to set the property when working with a
object:

You can set the attribute of an element to achieve the same effect, as
shown here:

You can set the method in the class using ActionScript, as shown in the next lines:

283

COMMUNICATING WITH THE SERVER

Choosing the format
You may also need to specify the format for the variables using the property. This format
indicates how the variables should be encoded before they’re sent to the server. The
property equates to the MIME type on the web server.

The default value for SWF applications is When applications
use this setting, the variables are sent as name/value pairs, just as you would see in an HTML form.
The name of each variable is separated from the value with an equal sign (). There is no limit to the
number of variables that a SWF application can send. Each of the name/value pairs is separated from
the others by the ampersand character ().

In addition, the names and values are encoded before they are sent. This type of encoding is slightly
different from the encoding that you’ll sometimes see in a web address. Spaces are encoded as a plus
() character. Other reserved characters—such as a question mark (), colon (), and equal sign ()—
use their own encoding. Nonalphanumeric characters are replaced by a percent sign (), followed by
two hexadecimal digits that represent the ASCII code of the character.

If the name/value variable pairs are sent to the web server in an HTTP request, the values are
added to the address of the requested URL. They appear in the section starting with the question mark
() after the page name, as shown in this example:

So, if a web page sends values using the method, the name/value pairs are clearly visible to a user
in the address bar of a web browser. When a SWF application sends variables using this method, the
server-side page requested doesn’t actually load into the browser window, so the name/value variable
pairs are never visible.

If the application uses the method, name/value variable pairs appear in the body of the request,
after the HTTP headers. They aren’t included in the URL, so they aren’t visible to the user. It’s also pos-
sible to send more data with the method than with the method.

In addition to the default setting in a SWF application, you can also use the
 setting. You would use this setting to send the variables as an XML document.

The setting is often appropriate if you need to send raw XML data to the server-
side page for processing.

When using the class, you would change the for the request with the follow-
ing code:

You would do the following with the element:

284

CHAPTER 9

The approach with the is similar:

Now that you understand some of the considerations for sending data to the server, let’s see how to
send variables with the class.

Working with the URLLoader class
Both Flash and Flex can work with the class. As you learned in Chapter 5, the
class is one of the classes in the package, along with the and
classes. These classes work together to provide the functionality for requesting external content from
a static or server-side page.

The class requests a URL from the server and handles the response. You use it to load infor-
mation from external files. As well as well-formed XML documents, the class can also load
raw text files and text files that contain name/value variable pairs.

We’ll focus on dynamically generated XML documents here. These documents exist only as a stream
of information sent by a server-side page. Of particular interest to us in this chapter is the
class’s ability to send variables with a request.

Sending variables with the URLLoader class
The class sends variables to a server-side page using a object. You specify
the name of the variable with dot notation, in the same way as you would specify a property of
an object.

The following code block shows a object named . This example shows how to
send and variables to the server using the HTTP method:

As I mentioned in Chapter 5, make sure you encode any characters in the variable
values with . Because the SWF application uses this character as a delimiter for
variable pairs, you’ll get unintended variable names and values if the character is not
encoded.

285

COMMUNICATING WITH THE SERVER

Receiving a response
When a SWF application sends variables to a server-side page, it needs to know that the response has
been processed successfully. The server will usually send back a return value. In the case where the
variables provide the filter, this will be the requested data. In other cases, it might be a notification of
the success or failure of the processing request.

If you’re working with the class, a successful request that receives a response dispatches
the event. In order to work with the response, you need to add an event handler for this
event, as shown in the following code block. The relevant line appears in bold, and you can see it with
the other code that you would need to make the request.

When the event is dispatched, the function deals with the processing of
the reply from the server.

You don’t need to name the event handler function with the event name, as I have done
here. It’s simply a useful convention that indicates which event the function handles.

The response from the server is in the property of the object. You would construct a
function something like the following code block:

The expression finds the property of the object, and therefore the
response from the server. This response is treated as a . If the response comes as an XML docu-
ment, you’ll need to use the constructor method to cast the response appropriately, as you can
see in the preceding example.

286

CHAPTER 9

Handling errors
Two events respond to errors in the request:

An event is dispatched if the method results in a fatal error that ends the
download.

A event occurs if the SWF application tries to load data that is outside the
application’s security sandbox.

You can add event handlers to respond in case either of these events is dispatched.

In addition, if you’re working over HTTP, you can use the event to determine the status of
the request. You can use this event to determine the HTTP status code for the request.

The following code block shows how to assign handlers for these events. As with the other event
listeners, you need to assign them before calling the method.

Each of these events will call the appropriate event handler, and you would need to add them as well.
The examples that follow show very simplistic error handling with a statement. In a produc-
tion application, your event handling is likely to be a little more robust, perhaps displaying an Alert
control with a detailed error message.

Let’s work through an example to show how to send a username and password to a server-side page
so that a user can log in. The server-side page will send back one of two values: or , indicat-
ing whether or not the user has successfully logged in.

Working through a URLLoader class example
We’ll work through the login example using the class in both a Flash and a Flex application.
As with the other examples in the book, the Flash application will use procedural code, and the Flex
version will use a custom class file.

287

COMMUNICATING WITH THE SERVER

This example will work with an ASP.NET page written in VB .NET. I’ve also provided PHP and ColdFusion
versions of the same server-side functionality, if you would prefer to work with either of those
languages.

Remember that to work through the examples, you’ll need an application server capable of processing
the server-side page. In my case, I’m using Microsoft’s web server, IIS. You may also work with Apache
or ColdFusion Server.

The server-side page is very simple. It will check that the passed-in username and password match
variables hard-coded within the file. We’re not concerned with connecting to a database in this
example, although you would use the same general approach as shown here.

The server-side page will return a simple XML document containing one element: .
This element will either contain the text or .

It’s important to note that the server-side page receiving the request must know how it’s going to
receive the variables from the SWF application. Server-side pages use different approaches to access
variables sent by the method from those that access variables sent by the method. In this
example, we’re using the method, although the method would suffice. I’ve chosen to use

 so that I can show you how to set the property.

The server-side page must also know in which format the variables will appear. Accessing XML content
sent from the SWF application works differently compared with accessing name/value pairs. In this
example, we’ll send the variables through in name/value pairs.

In the next section, I’ll explain the server-side pages. I’m not providing a tutorial about how to write
each server-side language, as you can find plenty of tutorials on the Web to help out. Rather, I’ll walk
through each of the server-side page examples so I can explain the code.

We’ll start with the simple VB. NET page. This page is written in VB .NET 3.5.

Understanding the VB .NET page
The VB .NET page will check the variables sent from the user and generate a simple XML stream con-
taining a response. In this section, I’ll show you the declarative code for the page. I’ve actually used
a code-behind page to keep the VB code separate from the interface. In my version, the VB code
appears in the file . You can find this page with the chapter resources, along with the
file .

The page contains only one line, as all of the processing code appears in the code-behind
page . The single line in the page follows:

This line declares that the page will be written in the VB language and that the events don’t need to
specify event handlers. It indicates that the code for the page exists in the page, and
that page inherits the class , created in the code-behind file.

288

CHAPTER 9

The full code for the page follows. I’ll explain it after the listing.

The code appears in a subroutine so that it is called after the page finishes loading.
The subroutine starts with statements that reference the relevant namespaces for the file. In this
case, the page needs the and namespaces, so it can write an XML stream from
this file.

When the page loads, it declares a number of variables, as follows:

 and : These variables store the master username and password.
Normally, you would get this information from a database. In order to keep this example as
simple as possible, the variables are declared within this file.

 and : These variables request the and
 details from the SWF application. The SWF application will the values to the

server-side pages, so the pages must request the details as if the application had sent details
from a form.

289

COMMUNICATING WITH THE SERVER

: This variable will store either or , depending on whether the user has
provided the correct username and password. Normally, you would make this a
variable. However, the value will be treated as a when the XML document loads the
SWF application. It keeps things simple to treat the or values as variables
here as well.

: This variable will store the XML content that will be returned to the SWF
application.

After declaring the variables, the subroutine compares the supplied username and password with the
values in the and variables. If both sets of values match, the value of
the variable will be set to ; otherwise, it will be set to .

The page uses an object to create and structure the XML content. It specifies that the
output will be an information stream, rather than a physical file, by using the
setting. The also indicates that the XML document will use encoding.

The VB .NET page sets the for the page to to indicate that it is returning an
XML document. It calls several methods of the object to create the XML document.
This subroutine calls the method to write the XML declaration for the file.
It then writes the opening element using the method. It uses

 to write the value of the variable inside the element, and
calls the method to write the closing tag.

Finally, the subroutine calls the method to write the content. It then calls the method
on the object. When it finishes, the page can return only one of the two following
results to the SWF application:

Both are very simple, well-formed XML documents containing a single root element.

Figure 9-1 shows what appears in a web browser window when this page detects that the supplied and
required values don’t match. In fact, because of the way I’ve set up this file, if no values are supplied,
the result will be a value.

Figure 9-1. Viewing the XML document generated by the VB .NET page

290

CHAPTER 9

Note the URL in the address bar of the web browser. It shows the address of the folder on my web
server using an path, rather than a path on the file system.

The PHP 5 example works in a similar way to the example you’ve just seen.

Understanding the PHP page
The PHP example is saved in the page . The contents of this page follow:

This PHP example is also simple. It starts by declaring the content type for the document as
. The next lines declare the variables that the page will need. I’ve used the same names for these

variables as in the VB .NET example.

The and variables contain the values required for a successful login.
Again, you would normally look these up in a database, but for simplicity, they are hard-coded here.

The and variables will store the supplied values from
the user. The page starts by declaring them as empty strings. Then it tests each value using

 to see if it has been sent from the SWF application. If so, the page assigns the values to the
 and variables.

291

COMMUNICATING WITH THE SERVER

The page compares the required and supplied values using the function. If the user
supplies the correct values, the variable contains the value ; otherwise, it contains
the value .

The next line creates a new version 1.0 object with encoding. This is the XML
document that the page will return to the SWF application. The file creates a single element called

 using the and methods.

The method requires the name of the element as the first argument and has an
optional second argument that indicates the content for the element. In this case, the content is the

 variable, so the text between the opening and closing tags will be either
 or .

Finally, the page finishes by writing the XML document to the browser window using . You
can find this page saved as with the other chapter resources. Running it in a web browser
will produce the same outcome that you saw in Figure 9-1.

The last server-side page we’ll review is the ColdFusion example.

Understanding the ColdFusion page
I’ve saved the ColdFusion version of this processing file as , and you can find this file with
the chapter resources. The contents of this page follow:

292

CHAPTER 9

The page starts with a tag, which provides the settings for the document.
In this case, the page suppresses whitespace and uses encoding.

As with the other examples, the page starts by declaring the variables it will use with tags.
The first two variables relate to the username and password that the user needs to provide to log in
successfully. As in the other examples, these variables are hard-coded to keep things simple. Again,
you don’t need to set a data type for these variables in ColdFusion.

The page then sets default values to use for the and variables. The page finds
these variables using and . The default values are empty strings. It’s
important to set the defaults, in case no variables are received from the SWF application.

After setting the defaults, the page then uses to set the and
 variables to the value of the variables sent from the SWF application. The code

will compare the supplied values when outputting the XML content.

The page generates the XML content within the block. The block has the variable name
, which the page will use to output the XML tree to the web browser window. The first

part of the XML content is an XML declaration.

The block also includes the literal tags and . Inside these tags, the next
lines use and tags with the function to compare the values of the
user-supplied variables with those required for a successfully login. The variable will
contain either the text or .

The code converts the simple XML document to a using the method. It then sets
the content type of the document to and resets the buffer. Finally, it outputs the XML string
using a element.

You can use any one of the three server-side pages that I’ve covered here as you work through the
example. You’ll just need to remember to use the correct page name: , , or

 and server path when you’re entering the URL information.

Let’s work through a Flash example that uses server-side processing to log in a user. The SWF applica-
tion will have a simple interface that collects the username and password from the user. The Flash
example will use procedural code, while the Flex example that appears later will use a custom class.

Working through the Flash example
In this example, the Flash application will collect the username and password from a user and send
them to a server-side page for processing. The server-side page will check the user’s credentials and
inform the SWF application of the outcome in a simple XML document.

This example will use a single object to pass variables and receive the response. Note that
it is possible to use multiple objects if you need to separate the loading of content from
the updating of content.

293

COMMUNICATING WITH THE SERVER

1. Create a new folder in your web server for the application and give it the name of your choos-
ing. I called my folder . Copy the relevant server-side file to that folder. I’m using the file

 in this example, so I needed to copy that file, as well as the bin folder containing
the compiled VB .NET code.

2. Copy the file from the resources to the folder on the web server. This file contains the
interface for the simple login application. Figure 9-2 shows how it appears when viewed in Flash.

Figure 9-2. The interface for the
login application

The interface consists of two TextInput controls and a Button, along with a text field in which
to display messages. The Password TextInput has the field set to .

3. Add a new layer and call it actions. You’ll use this for all of the ActionScript code. Open the new
layer in the Actions panel with the F9 shortcut key.

Add the following code at the top of the actions layer to set up the application:

These lines declare the variables for the application. You’ve seen this code before. The first
variable, , is a object that will send the request. The variable is a

 object that details the page that the application will request. The variable is
a object that will pass the username and password from the SWF application to the
server-side file. The final line calls the function, which you’ll create in the next step.

4. The SWF application will use the function to create the , , and
 objects to make the request.

Add the following function to the actions layer, underneath the call to the function.
I’ll explain it after the code.

294

CHAPTER 9

The first two lines set up the URL of the server-side page. The is separated from
the page name. You may need to change the value of the variable and server-side
file name to reflect your own settings.

As I discussed earlier, it’s much easier if you set a variable for the path to the folder on the web
server. You’ll be able to change this value when you move the application to its production
location. If you were going to use more than one object, you would probably set
this variable at the top of the actions layer, rather than as a local variable inside a function.

The application sets the of the to , as the
server-side files are expecting a request. If the server-side files weren’t specific about how
they expected the variables, you could omit the line, and the application would use the default
method .

5. The SWF application will request the server-side page after the user enters a username and
password and clicks the Log in button. You’ll need to add an event listener that responds when
the user clicks the button to start the process.

Add the following line to the end of the function:

This line adds the handler function to the instance as an event
listener. The function will respond to the event. You’ll add the function
shortly.

6. The application also needs to react when it receives a response from the object
indicating that the request is complete and that it has received a response. You need to add an
event listener that listens for the event.

Add the following line to the function, below the previous line of code:

Again, you’ll add this handler function shortly.

7. The application should trap two more events: and . These event han-
dlers will provide some basic error-handling capability and display error messages to the user.

Start by adding the following statements at the top of the actions layer:

These statements import the two classes needed for the error handling.

8. Add the following event listeners in the function. You’ll add the functions them-
selves in a later step.

9. Let’s now move to the event handler functions, starting with the function to handle the Log in
button click. Add the function below the function. This is the func-
tion that assembles the variables and makes the request for the server-side page, passing the
variables.

295

COMMUNICATING WITH THE SERVER

This function retrieves the user entries from the and fields. It then
tests both entries to check that values have been supplied using the property. If both
entries have a length greater than , the code block inside the portion of the code block
executes. If not, the code in the portion executes. In that case, the application displays
the message You must enter both a username and password before clicking the button in the

 instance.

When the user provides both details, the function clears any existing messages in the
 text field. It then adds the and properties to the

object, and assigns the relevant values from the user. These lines create the name/value pairs.

Once the function assigns the values, the object is set as the property of
the object. This portion of the code block finishes by calling the method
of the object to make the request for the supplied object, .

10. Add the function to respond when the application receives the server
response. Remember that the response is a simple XML document containing one element:

. This element contains one of two values for the text: or .

Add the following function to the actions layer:

The function receives an object, which it will use to locate the loaded data with the
expression . The function starts by assigning this property to the
XML object. It uses the constructor method to assign the value, because it needs to cast
the loaded content as an object instead of leaving it as a . The function also declares
a variable, , which will contain the response to the user.

296

CHAPTER 9

The function locates the text in the server response using the
method. Because there is a single element in the XML document, the function can apply
the method to the object, which is equivalent to the root (and only) element in the
document.

The function tests the value of the response and sets the message string appropriately. Notice
that this comparison is a string comparison.

The function uses the method on the
expression because that expression returns an . In fact, because
the consists of a single value that is text, you don’t actually
need to use . You could just use the expression

 to find the text inside the element.

The compared value is a , rather than a value, because all values from
an XML document are treated as values by default. The function could have cast the
returned value as a variable, but I think it’s simpler to use the approach shown here.

11. The final step is to add the two error-handling functions that follow:

These functions display text to the control in the case of either an or a
. Both functions display the property associated with the error.

12. Test the application in the Flash. The supplied server-side files use the username sas and pass-
word secret. Figure 9-3 shows what you should see if you provide the correct login values.

Figure 9-3. The interface after a successful
login attempt

297

COMMUNICATING WITH THE SERVER

13. Publish the file and run the created HTML file through the web browser. Don’t forget to enter
the full server path in the address bar. Figure 9-4 shows the application with an unsuccessful
login. I’ve purposely included the address bar in the screenshot so you can double-check the
path that you’ve used. If you want to check the error-handling features of the application,
change the name of the file and use a server path in a different domain.

Figure 9-4. The application in a web browser showing an unsuccessful login
attempt

In this example, I showed you how to integrate a simple SWF application created in Flash with a
server-side page. The example used the page . Alternatively, you could have used the

 or page provided with the chapter resources.

The complete code for the actions layer follows, in case you want to check it against your own file:

298

CHAPTER 9

You can find my completed Flash file saved with your chapter resources.

Let’s move on to the Flex version of this example.

Working through the Flex example
The Flex version of this example will achieve the same outcome as the Flash version, but use class-based
code. It will work with the same server-side pages as the Flash example. I’m going to work with the
VB. NET page server-side, but feel free to use the PHP or ColdFusion version.

1. Create a new Flex project and application file with the name of your choosing. Set the location
to a folder in your web server. I’m using the folder that I used in the previous example.
This folder contains the relevant server-side file.

2. Create a new ActionScript class using the command File New ActionScript Class. Add
the class to the package and call it . The file should contain the
following:

299

COMMUNICATING WITH THE SERVER

3. Add the following statements above the class declaration:

These statements reflect the classes needed for this example. The and
 classes cover error handling. The class allows the application to

display simple errors from the class file.

4. Add a bindable declaration above the class declaration so that all public methods and proper-
ties will be bindable in the application file.

5. The code needs to declare some private variables for the , , and
 objects used in the class file. It also needs to declare an object to store the

server response.

Add the following declarations below the class declaration:

6. You’ll need to modify the constructor method to receive the server path as an argument.
The method also needs to create a new and add an event listener that responds
to the event. It finishes by adding event handlers for the error events and

.

Modify the code as shown in bold here:

300

CHAPTER 9

The method sets the value of the private variable to the
argument that the application file will supply. It creates a object and adds an event
listener that responds when the loading operation completes successfully. The event listener
calls the method.

The constructor method also adds event handlers to deal with the and
 events. You’ll add those handler functions soon.

7. Add the first event handler, the method, as shown here:

This method assigns the returned XML content from the server-side file
to the object , casting it to the type with the constructor method.
The method then dispatches the event so that the application will know that the
server response is available.

8. Next, add the method.

This method dispatches an to inform the application that there has been an
. It sends the text associated with the event in the dispatched event. The application

will then be able to display an appropriate error message in the TextArea control. The other
two arguments, and , have been left at their default values.

9. The final event handler is the method. Add the following private
method to the class file:

As with the previous handler function, this function dispatches an event to the application. This
time, it’s a . This method also passes the text associated
with the error.

10. The code doesn’t include a function to handle the request and associated variables. You need
to create a public method that the application can call. The application will send the variables
as an , set the property of the , and call its method.

This public method, which I’ve named will receive two arguments: the name of the
server-side file to request and the variables to send with that request. The application will com-
bine the server-side file name with the value of the variable to determine the full
path to the file.

301

COMMUNICATING WITH THE SERVER

You could also pass in the full path to the method, and the
result would be the same. However, it’s better to pass the values to
the class file separately, in case the application works with more than
one object. That’s not the situation here, but it’s good practice
to code so that it’s easy to extend class files later if needed.

Add the method now.

Again, the code uses a block to provide some simple error handling. In the case
of an error, the application will display the message Can’t contact server side file in an Alert
control.

As I said earlier, you would probably make the error handling a little more robust in a real-world
application. Instead of displaying an Alert, the class file could dispatch an event to the applica-
tion. You could add also some checking to make sure that the server path includes a finishing
forward slash (). If this character is missing, the full path to the server-side file won’t be cor-
rect. I’ll leave you to think about those areas yourself!

The method creates a new object, using the server path already
assigned and the URL passed in as the first argument. The method assigns the variables argu-
ment to the property of the object and sets the to the variables
to the server-side page. The method finishes by calling the method to make
the request for the server-side file.

11. The class will need one public method to return the response from the server-side
file. This file will return a single simple element: . Remember that the element
will contain the text or . The application will apply the method to locate
the text inside this element when it receives the object from the object.

Add the following public method to the class file:

302

CHAPTER 9

You’ve now finished creating the class file. I’ve included the completed code so that you can
check what you’ve done against my version.

303

COMMUNICATING WITH THE SERVER

12. The next step is to create the Flex application file. Start by building the interface. Switch to the
main application file and add the following interface elements inside the
element:

Figure 9-5 shows how the interface should appear in
Design view.

The interface includes Label controls as well as two
TextInput components where the user will enter a user-
name and a password. The Password TextInput has the

 attribute set to to mask the
password entry.

The interface also includes a Log in button, which will trig-
ger the request. Messages, including the response from
the server, will display in the TextArea control. Feel free to
make changes to this interface. However, make sure that
you don’t change the settings for the components.

13. As you’ve seen previously, a function called will set up the application. It will be
called in the attribute of the element.

Modify the element as shown here in bold to add the
attribute:

 Figure 9-5. The Flex application
interface for the URLLoader class

example

304

CHAPTER 9

14. The function and supporting code appear in the following block. Add
it above the interface declarations. I’ll explain it after the code.

This block starts by importing the relevant classes. The statements include
the class, which is necessary because this event is dispatched when the interface
finishes creating. The handler will receive this event as an
argument.

The code block needs to import the custom class that you just created. It also needs
to import the classes for the two error events and .

The function declares two variables, , which is of the type , and
. The variable contains the path to the application on the web server.

You may need to change the value of this variable if your server path is different.

The function receives a as an argument. Even though the application
won’t use any properties of this , it is best practice to recognize that the function receives
the .

The function creates a new instance of the class using the constructor method. It
passes the variable as an argument to this function.

The function also assigns four event handlers. The first three handler functions
relate to the object.

305

COMMUNICATING WITH THE SERVER

The first handler is the function, which is called when the
receives a response from the server-side page. Second is the function,
which responds when notified of an , such as a missing server-side page or incorrect
file path.

The third function, , is dispatched when a security error occurs. This
error might happen if the application tries to load external content from a sandbox different
from that of the SWF application’s own sandbox.

The last event handler is the function. This function responds when the user
clicks the Log in button.

The code block includes the empty handler functions for each of these events as well. Even
if they don’t contain code, adding the empty functions will allow you to test the application
without generating an error message.

15. When the user clicks the Log in button, the application needs to validate the username and
password before it calls the method of the object. The validation
consists only of checking that the user has entered values.

Once the application determines that entries have been made, it will call the method.
The method passes the URL of the document to load, as well as a
object containing the entered username and password.

Modify the Log in button function as shown here in bold:

The function starts by determining the values that the user has entered in the
TextArea controls. It test the length of both the username and password entries to check that
the length is greater than .

If the function can validate these entries, it creates a new object called .
It assigns the and properties from the entries in the TextInput controls. The
function then calls the method, passing the name of the server-side document and
the object.

The code example uses the server-side file . If you’re using a different file, you’ll
need to change the name of the server-side file in the method.

If the user leaves either TextInput control blank, the message You must enter both a username
and password before clicking the button displays in the TextArea at the bottom of the interface.

306

CHAPTER 9

16. The application needs to respond when it receives a reply from the web server. The reply could
be a successful response from the server-side file or notification of an error. Let’s deal with a
successful response first.

When the application receives a response, it will display it in the TextArea control. To have the
 function process the response, modify it as shown in bold here:

This function starts by declaring two variables: one for the message that will display
in the TextArea, and a second for the response received from the server-side page. It uses
the method to obtain a representation of the XML content. Because the
response is a simple XML element—that is, it doesn’t contain anything other than text—
the method returns only the text inside the element.

The function tests the response from the server and compares it against the value .
I’ve stuck with strings rather than casting the returned value as a variable to keep
things simple.

The function creates one of two messages, depending on whether the user
was able to log in successfully. It finishes by displaying the message in the TextArea control at
the bottom of the interface.

17. The and functions will deal with notifications of
errors. In both cases, the property of the event will display in the control.

Modify the handler functions as shown here in bold:

These changes are self-explanatory. They access the property sent with the dispatched
events.

18. Test the application. If Internet Explorer is your default browser, run the application to gener-
ate the test files and view the content directly from Flex Builder. If you’re using Firefox, you will
need to run the application to compile the files, and then copy them from the folder to
your web server folder. You can view the application by entering the URL in the web browser.
Your URL should start with , so in my example it would be

.

307

COMMUNICATING WITH THE SERVER

After loading the HTML page in the browser, enter values for the username and password. The
correct login values from the original server-side files are sas for the username and secret for
the password.

When you click the Log in button, you should see the TextArea update with a message.
Figure 9-6 shows the effect of a successful login.

Figure 9-6. The completed Flex
application for the URLLoader class
example

You can test if the error handlers work by changing the name of the server-side file to one that
doesn’t exist. You can also enter a domain outside the current SWF sandbox for further testing.
Figure 9-7 shows the effect of using an incorrect file name.

Figure 9-7. The Flex application
displays an error message.

The complete code for the application file follows:

308

CHAPTER 9

309

COMMUNICATING WITH THE SERVER

You can find the resource files for this example with the other chapter resources saved as
and .

As I mentioned earlier, the error handling in the Flex custom class file is not partic-
ularly robust. Feel free to modify the code to add more error handling. You might
also want to modify the error-handler functions in the application file to display more
user-friendly error messages.

So far, this chapter has covered only how to work with the class in Flash and Flex. Flex
provides other approaches: using the element and class. We’ll turn
our attention to that topic next.

Working with the <mx:HTTPService> element
Both the element and class allow you to request a URL from the
server and receive a response. You can optionally send arguments with the request, perhaps if you
need to filter the content or provide updates to a data source. You might also wish to have the vari-
ables processed on the server in some way. For example, the Flex application may require the server
to generate an e-mail or save the values in a text file.

The element exists in the package. As with the class,
when using the tag, the application must wait until it receives a response from
the server before it starts to process the loaded content. The response could also be notification of
a fault.

Chapter 6 covers the element in detail. Before we work through an example using
this element, let’s have a quick refresher about how to send variables with the request.

Sending variables with the <mx:HTTPService> element
As with the class, you can send variables when you use the element to
make a request for a server-side page. There are several different ways to send the variables with the
request.

First, you can send variables at the same time that you call the method. If you choose this
approach, you pass an that contains the name/value variable pairs inside the method
call. You can see an example of this approach in the following code block:

310

CHAPTER 9

Here, the use of the curly braces indicates the creation of an . The object contains one name/
value pair. The variable is called , and it has the value . Notice that the code uses single
quotes to indicate that it is passing a value.

You can also can use the element inside the element. The
 element lists the variables that you want to send. In the following code block,

the element sends the same parameter, , as shown in the previous
example:

The element appears as a tag within the element. This tag uses a
lowercase initial letter, unlike the uppercase letter used by most other elements.

The advantage of this approach is that it is tag-based rather than relying on an ActionScript statement.
Where you have a lot of variables, using the element may make the application code
easier to read.

A further advantage is that you can bind the variable value to other elements in the application.
In the following example, the element takes its value from the property of the

 element:

We discussed the and settings earlier in the chapter, and both of the properties
are available as attributes of the element. The following ele-
ment uses the method to send the variables and structures them as an XML-formatted object.
I’ve highlighted the relevant attributes in bold.

The property determines the format for the variables. As I mentioned earlier, the default
value of this property is ed, which equates to name/value variable
pairs. You can also use the setting if the URL that you request expects to receive raw
XML data from the SWF application.

If you’re sending variables in XML format, you’ll need to format them differently. The following block
shows how you might do this inside the event of the application:

311

COMMUNICATING WITH THE SERVER

The preceding code block provides an alternative to passing an with the method call.

Receiving a response
When you receive a server response using the tag, you can respond in one of two
ways: either bind the response directly to UI elements or assign a event handler. The latter
option requires you to write ActionScript code; the former does not. Either way, the response appears
in the property of the element.

The following code shows how to bind a response for display in a TextArea control:

The TextArea control uses curly braces binding syntax and accesses the response using the expression
, where is the of the element. It sets this as

the value for the property of the element.

As an alternative, the tag includes an attribute called , which allows you
to assign a result handler function to respond to the server response. In the following example, the

 function will fire when the server provides a successful response:

You would then need to write an ActionScript function called to process the
response. An example function follows:

The function receives an event as an argument. The event object allows the function
to access the property of the object, which it identifies using .

The function declares an object named to store the response. This example sets the
 for the request to so it can assign the response directly to an object.

The function assigns the server response to the object using the expression
. The expression is equivalent to the root element of the loaded XML document.

Because you’ve created an object, you can find specific parts of the response using E4X expres-
sions or XML methods.

312

CHAPTER 9

Handling errors
The element has another attribute, , which allows you to assign a fault han-
dler function in case of error. You can see an example shown in bold in the following element:

Again, you would need to write an ActionScript function to respond to this event. The following is a
sample function:

Working through an <mx:HTTPService> element example
Let’s work through the same example as in the previous exercise, where a user logs in to an applica-
tion, and a server-side file checks the username and password. In this case, you’ll see how to work with
a tag-based approach using the element.

1. Create a new application file in Flex Builder and give it the name of your choosing. Make sure
the application file is stored with the previous examples, in a folder on the web server.

2. Add the following interface elements:

The interface includes two TextInput controls for the user’s username and password. The
Password control has the attribute set to . There is a Log in button
to initiate the request to the server-side page. The control will display messages
to the user, including the server response.

313

COMMUNICATING WITH THE SERVER

Figure 9-8 shows how the interface should appear in the Design view of Flex Builder.

Figure 9-8. The Flex application
interface for the <mx:HTTPService>
element example

3. Add the following tag above the opening component:

This element has the . The attribute contains the full
path to the web server folder—in my case. . It also includes the file
name . You may need to change this value to your own web server address and
update the file name if you’re using either the PHP or ColdFusion version.

The code sets the value of the attribute to . This value will display a busy
cursor while the request is in progress. It’s handy for the user to know that the request is in
progress. Unfortunately, this property isn’t available when you script the class.

The element also contains the attribute so that the variables will be sent using
the method. All of the server-side pages provided expect that the value will be sent
using this method.

The code block includes both opening and closing tags because you’ll add an
element between them containing the username and password values. The element specifies

 as the because the server-side page will respond with an XML document.

4. The variables to send with the element will come from the user entries
provided in the Username and Password controls. You’ll use binding expressions to bind the
values directly to the variables in the element.

Modify the tag as shown in bold here:

314

CHAPTER 9

The changes include a new element that contains two values:
and . The variables are bound to the properties of the and

 controls using curly braces notation.

5. The application will send the variables with the request when the user clicks the Log in button.
The code needs to include a attribute in the element. The value of this
attribute will call the method of the object.

Add the following attribute to the Log in button, shown in bold in the following line:

6. The application will display the server-side page’s response in the TextArea component.
The server-side file will generate a single element, , containing either or

. The code will bind the text inside this element to an ActionScript expression that tests
the property of the element.

Modify the element as shown here in bold:

The ActionScript expression is complicated and uses nested statements in their ternary
form. That’s where you use the following format for an statement:

The expression starts by comparing the value of . If it equals the
 value , the property of the control is set to display Congratulations.

You were successful.

If the value doesn’t equal , the expression specifies a second comparison, comparing the
 property to . If the value is , the TextArea displays the text Login failed.

Please try again; otherwise, it displays nothing.

Why do we have two tests and two nested statements? Because if we only test for a
value, the Login failed message will display at all other times, including when the application
first loads. Seeing this message before they’ve done anything is likely to be confusing for
the users.

7. That’s it for the tag-based version of this simple application. Make sure that the server-side
file you’re using is saved in the folder inside the application folder. If you’re using
the VB .NET version of the file, make sure you copy both and the bin folder to
that folder.

8. Click the Run button in Flex Builder to see how the application works. Enter the username sas
and the password secret, and then click the Log in button. Figure 9-9 shows how the applica-
tion should appear in a web browser after a successful login.

315

COMMUNICATING WITH THE SERVER

Figure 9-9. The completed Flex application for the
<mx:HTTPService> element example

Note that the error handling for this application is even less robust than the handling in the
previous examples.

I’ve purposely included the address bar in Figure 9-9 so that you can see
the address for the Flex application. In my case, the address of the HTML
page is file-based, starting with . You might be confused because I told
you that the server-side file needs to use a URL starting with .

When the Flex application moves to its final production environment,
you’ll be accessing it with an path. For testing purposes, the
application can use a file-based path. However, the code that refers to
the server-side file inside the application must use a URL starting with

. It’s only the server-side page that must be processed by the
web server.

The complete code for the application follows, in case you want to check your file:

316

CHAPTER 9

I’ve saved this example as with the other chapter resource files.

Let’s move on to the class.

Working with the HTTPService class in Flex
The class, in the package, works in a very similar way to the
element. There are some minor differences between the two, which are covered in Chapter 6. You’ll
need to write ActionScript to work with the class.

Sending variables with the HTTPService class
If you are using the class, you need to send the variables using ActionScript by including
them in the method call, as follows:

You can also add the variables in ActionScript using the following approach:

317

COMMUNICATING WITH THE SERVER

Receiving a response
When working with the class, a successful response from the server dispatches the
event. You would need to set an event handler to deal with this response. In the following example,
the appropriate line appears in bold with the other code needed to script the class:

When the dispatches the event, the function processes the
server reply. A successful response from the server can be accessed in the property of the

 object.

In order to access this response, you would construct a function like the one shown here:

The expression finds the server response. The code assigns this response to a
variable called . Because the code specifies a of , you don’t need to cast
the response.

Handling errors
You can also assign an event listener that responds to the event. The application dispatches this
event when the request is not successful. The following code shows how to assign the event handler:

As with the event handler, you need to assign this function before calling the method.

You would then need to create a function. A sample function follows:

318

CHAPTER 9

This example displays the message using a statement. This approach is good for debugging,
but not appropriate for a production application. The exercise in the next section uses an alternative
approach.

Working through a HTTPService class example
In this final example for the chapter, you’ll build the same simple application you saw earlier, but you’ll
do so using the class with a custom ActionScript class. You’ll work in the same folder on
the web server that you’ve used for the previous examples.

1. Use the File New ActionScript Class command to create a new ActionScript class. Add the
class to the package and call it . The file should contain the follow-
ing code:

2. Add the following statements underneath the package declaration. These statements
reference the classes that the application will need to use, including the two events you’ll cap-
ture. You can also wait and see if the statements are added automatically when you declare the
variables and write additional code a little later.

3. Add a declaration above the class declaration. The code needs this declaration to
make all of the public methods in the class file bindable in the application file.

4. Declare the following private variables below the class declaration:

The first variable, , will store the returned XML document. The second variable,
, refers to the object that will make the request from the server-side

file.

5. Modify the constructor method as shown here:

319

COMMUNICATING WITH THE SERVER

The constructor method creates the object and adds an event listener that
responds when the object receives a event. This event is broadcast when the application
receives the response from the server-side page. After receiving the event, the
function will execute, processing the response. The method also adds another event listener to
respond to the event.

6. Add the private method shown here:

The method is private because it will be needed only by the class file. The
method sets the value of the object to the server response using the expres-
sion .

The method then dispatches the event to the application so that it will know that the
request has finished and that a result has been received.

7. You also need to add the method to this class file. This method follows:

This method dispatches a . It passes the parameter so that the applica-
tion file can display the correct error message in the interface.

8. The class file needs a public method that makes the request for the server-side file. I’ll call
the method . This method will receive two arguments: the name of the file to
request and the variables to send with that request.

For simplicity, the file name will need to include the server path. You could also send this in as
another argument, if you want to store the value separately.

The method creates a new object, using the URL passed in as the
first argument. Because you’ll be using this with a server-side file, the variable will need
to contain a full path.

The public method sets the property to , as the application is expecting the
server-side page to return an XML document. It assigns the argument to the
property of the object so it can send the variables. It also sets the prop-
erty to the variables to the requested page. The last line of this method calls the
method of the class to make the request.

320

CHAPTER 9

9. The class will need one public method to return the content from the external
document that is stored in the variable .

Add the following public method to the class file:

The method returns the object provided by the server-side page. Don’t forget that you
populated the object in the method that you created earlier.

That’s all the code for this class file. I’ve included the complete file so that you can check it
against what you’ve done.

321

COMMUNICATING WITH THE SERVER

10. You’ll use this custom class in a Flex application file, so create a new file with the name of your
choosing. Add the following interface elements:

The preceding code block creates the interface shown in Figure 9-10. This is the same interface
that you saw in Figure 9-8.

Figure 9-10. The Flex application
interface for the HTTPService class
example

11. The code will initialize the application by calling a function named in the
 attribute of the element. This function will set up

the necessary variables, including a new object.

Modify the element as shown here in bold:

This function call will pass a .

322

CHAPTER 9

12. Add the following block, which includes the function:

This block starts by importing the relevant classes. If you forget to add these lines,
the statements should be added automatically when you refer to the classes in the
remaining code.

The application will need the class, as this is the event type dispatched when the
interface finishes creating. It imports the class to deal with the event
dispatched by the element. Similarly, it imports the class because it
needs to handle the event of the element. The last statement deals
with the custom class that you just created, .

The code creates a object called . It declares the
function, which receives a as an argument.

The function creates a new instance of the class and then assigns the
 function to be called when the object finishes requesting

the external document and receives the server response. It also assigns the
function, which will respond if there is an error.

At the moment, neither the nor function contains any code.
The code includes these function signatures to avoid errors in case you decide to run the
application.

The function assigns an event listener to the instance. This listener
responds to the event of the button with the function. The
block also contains an empty function.

323

COMMUNICATING WITH THE SERVER

13. When the user clicks the Log in button, the application needs to check that a username and
password have been provided before it calls the method of the
object. It will do this by testing that both entries have a length greater than .

Modify the function as shown here in bold:

The function starts by assigning the values provided by the user to two vari-
ables: and . It then tests these variables to check that the length of both
entries is greater than .

If this is the case, the user must have entered values in both TextInput controls. The func-
tion creates a new and assigns the and variables. It then calls the

 method of the object, passing the URL to request, as well as the
 containing the variables.

The URL of the server-side file contains the full path on the web server. You may need to
change the path from what is shown in the code sample to one that reflects your own
settings. If you’re using either the PHP or ColdFusion example, you’ll also need to change the
file name.

If either of the TextInput controls does not contain an entry, the message You must enter both a
username and password before clicking the button displays in the TextArea at the bottom of the
interface.

14. The last step in building this application is to respond when a reply or fault is received from the
server-side file. The application will display a successful response in the TextArea control using
the function.

Modify this function as shown in bold:

324

CHAPTER 9

The function starts by populating the variable with a representation of the
server response. It finds this using the public method, which returns an
object. Because the object contains a single element, the method will find the
text inside that element, which is either or .

The function tests the response and populates a variable with an appropriate message.
It then displays this message in the .

15. Let’s finish with the method. Modify it as shown in bold in the following code
block:

16. You’ve now finished the Flex application file. Run the file and enter values for a username and
password. If you want to test for a successful response, enter the username sas and password
secret. Use other values if you want to see an unsuccessful response.

When you click the button, you should see the TextArea update, as shown in Figure 9-11.
Unlike in the previous tag-based approach, you won’t see a busy cursor while the request is in
progress.

Figure 9-11. The completed Flex application for the
HTTPService class example

If you want to test the error handling, change to the name of the server-side file to one that
doesn’t exist in the folder. Figure 9-12 shows the effect. You may wish to replace this message
with a more user-friendly error message!

325

COMMUNICATING WITH THE SERVER

Figure 9-12. The Flex application
displays a fault.

The complete code for the application file follows, in case you want to check it against your own
application:

326

CHAPTER 9

You can find the resource files for this example with the other chapter resources saved as
 and .

Choosing the Flex approach
Flex provides you with three approaches when it comes to communicating with the server. You can
work in ActionScript with the or the class, or you can use a tag-based approach
with the element. How do you know which to choose?

If you prefer to take a tag-based approach or you’re working with very simple content, choose the
 element. You won’t need to write any code, and you’ll be able to use simple bind-

ing expressions to display the content in the application interface.

327

COMMUNICATING WITH THE SERVER

However, if you prefer to work with ActionScript, you’ll need to choose either the
or class. You’ll need to cast your returned content as XML before you can use E4X
expressions with the . You can specify this format specifically when working with the

 class.

The class allows you to monitor the progress of your request using the and
 properties. These properties aren’t available with the class.

The class also gives you access to a wider range of events. This can provide more detailed
error handling than with the class. So if you want a little more control in your Flex
application, writing ActionScript with the class is the best approach. Chapter 5 demon-
strated how to do this.

Summary
In this chapter, I showed you how to integrate SWF applications with server-side pages. You saw
examples of a server-side page in VB .NET, PHP, and ColdFusion. We worked through applications
in both Flash and Flex that used the class to send variables and receive a response from
the server. You also saw how to achieve the same result with the element and

 class.

In the next chapter, I’ll show you how to work with web services in ActionScript 3.0 in both Flash
and Flex.

329

Chapter 10

A web service is a remote procedure that provides results in XML format. It’s a bit
like running a public function on someone else’s computer. The user can call the pro-
cedure without needing to know anything about the way the remote system works or
the way it stores the information. When users access data from a web service, they
are said to consume the web service.

A web service allows an organization to make its data publicly available without pro-
viding a user with direct access to its systems. Using a web service provides a layer of
abstraction between a user and corporate systems.

You might use a web service in an application to look up a currency exchange rate,
to access local weather information, or even as a way to connect to in-house infor-
mation in a structured way. The key point is that the information is usually provided
from remote computers; that is, computers running at a different location from the
current application.

There are many different types of web services, including representational state trans-
fer (REST), XML-Remote Procedure Call (XML-RPC), Simple Object Access Protocol
(SOAP), and JavaScript Object Notation Remote Procedure Call (JSON-RPC). These
represent different ways for users to access the remote service.

SWF applications built in Flex can access SOAP web services using the
element and class. In this chapter, I’ll go through both of these approaches
and we’ll work through two examples, showing different ways to consume the same
web service.

The web service we’ll consume in the examples is a currency conversion service. We’ll
build an application that retrieves the rate and converts an amount.

CONSUMING WEB SERVICES WITH FLEX

330

CHAPTER 10

Flash doesn’t have access to the class. However, there are some alternative ways that you
can use a SWF application built in Flash to consume a web service. That’s the topic for the next chap-
ter, so skip ahead if you’re particularly interested in Flash.

You can download the resources for the chapter from .

Before we explore how to consume a web service in a Flex application, it’s important to understand
some background information. The first section in this chapter explains some of the concepts associ-
ated with web services and some of the terms that you’re likely to come across.

Understanding web services
As I mentioned, there are many different standards or protocols for working with web services, includ-
ing REST, SOAP, XML-RPC, and JSON-RPC. By the broadest definition, you could also consider an RSS
feed to be a web service.

All of these approaches provide access to information in a different way. Each uses a different vocabu-
lary of XML to return the content.

One of the most popular protocols for web services is SOAP. It is also the most relevant for this book
because it is the only protocol supported by Flash and Flex. Because the class in Flex
works with SOAP web services, we’ll start with that topic.

Understanding SOAP web services
SOAP is a communication protocol that uses XML to describe web services. It uses a system of mes-
sages. SOAP messages occur in two directions, and are requests made to and responses received from
a web service.

The SOAP protocol comes in different versions, and the latest is version 1.2. It describes the specific
XML vocabulary required to make the request and provide the response. If you’re interested in finding
out more about SOAP, you can read about SOAP 1.2 at the W3C web site in the following pages:

SOAP primer:

Messaging framework:

Adjuncts:

SWF applications built in Flex can access SOAP web services using the class. Flex applica-
tions can use the element and class to create the SOAP message for the
request automatically. They can also decode the SOAP response from the web service.

In order to be able to use a web service in a Flex application, you must be able to specify a Web
Services Description Language (WSDL) file. The WSDL file provides the details of the functions the
web service provides, how to access those functions, and how the returned data will be provided.

The functions available at the web service are described as operations within the WSDL file. This
file describes which parameters each operation requires, as well as the relevant data types. It also
describes which return values each operation will provide and their data types. As well as built-in data
types, the WSDL file can also define custom data types.

330

331

CONSUMING WEB SERVICES WITH FLEX

Understanding the role of WSDL
WSDL is a vocabulary of XML, so you can view the contents of a WSDL file by loading the URL into a
web browser. Figure 10-1 shows a sample WSDL file.

Figure 10-1. Viewing a WSDL file in a web browser

This WSDL file is for a currency conversion web service and is at the URL
.

A WSDL file contains a set of definitions. It defines the data types used for the operations, the mes-
sages that it can receive and send, the operations available, and the communication protocols that the
web service uses.

As far as developers are concerned, the most important parts within the WSDL file are the
elements. These elements contain details about the operation request and response, including the
name of the operation.

In Figure 10-1, you can see that the operation displayed is called . The
element provides a description of the operation with supporting information.

The WSDL file indicates that the operation requires that the following element is sent
with the request:

331

332

CHAPTER 10

This argument is defined as part of the namespace, and it represents a custom data type.
Further digging in the WSDL file reveals that the namespace is associated with the

 URL.

The WSDL file defines the data type as a complex element made up of
and values. Each element can appear only once in the data type. This means that the user
needs to provide two arguments when calling the operation.

The following code block shows the definition of the data type from the WSDL file:

You’ll notice that this definition also specifies that both the and elements
are of the type . The WSDL file defines this as a simple type element containing a list
of abbreviations for acceptable currencies. The relevant element in the WSDL file follows, but I’ve
included only the first two values in the list:

For developers, this data type means that they must send the correct abbreviation when they query
the web service. The abbreviation must be one of the values in the elements.

The web service returns a single element described in the following element:

The WSDL defines the message as a element.

The element is a complex type element made up of a single element called ,
which is of the type . The following code block shows the details of this element:

333

CONSUMING WEB SERVICES WITH FLEX

You can see that finding your way through a WSDL file can be very complicated! Luckily, Flex can
decode the contents of the file so that you don’t need to understand it in any detail.

The element and ActionScript 3.0 class provide all the functionality that
you need to work with SOAP web services in Flex.

Using Flex to consume a web service
You can use the element and class to make requests of a SOAP web
service in any Flex application. You’ll need to provide the WSDL of the web service, the name of any
operations that you want to call, and the parameters required by those operations. The SOAP web
service will then provide a response, which is either the returned value or a fault.

You can use a tag-based or scripted approach. I’ll show you both approaches, starting with an over-
view of the element.

Working with the <mx:WebService> element
The element consumes SOAP web services and provide a response to a Flex appli-
cation. To consume a web service with the element, you must take the following
steps:

1. Create the element, providing a valid attribute.

2. Specify the web service operation(s) and identify the parameters to send.

3. Call the method of the web service.

4. Process the response from the web service.

We’ll look at each of these steps in turn.

Creating the web service request
You can create a web service request using the element. You’ll need to give the ele-
ment an and specify the URL for the WSDL file in the attribute, as shown here:

334

CHAPTER 10

You may also want to display a busy cursor while the request is taking place. You can do so using the
following attribute:

This attribute is useful as it informs the user that the request is in progress. It is available only to the
element, and you can’t set this property in the class with ActionScript.

Once you’ve set up the tag, you need to specify which operation to call from the
web service.

Specifying the operation
Each type of remote procedure available in the web service is called an operation, and you need to
specify which operations you want to call from the web service. As I showed you earlier, it’s possible
to identify the operation names from the WSDL file. Even though you might add a single
element, it’s possible for the application to call multiple operations within that web service.

You add each operation that you want to access using an element between the open-
ing and closing elements. You then specify the arguments for that operation with
the element. Every argument that you want to send for a specific operation appears
inside the element, as shown here:

The values that you send with an operation frequently come from UI components in the applica-
tion. When working with a tag-based approach, it’s often easiest to access them with binding expres-
sions. The following code shows how you might use bindings when specifying the arguments for the
operation:

Once you’ve added the operation, you need to make the request.

Making the request
You call the method of the web service to make the request. You’ll need to refer to the of
the element and the operation name, as shown here:

335

CONSUMING WEB SERVICES WITH FLEX

It’s important to include the operation name, as it’s possible to add multiple operations inside the
 element.

If you need the response to be available when the application loads, you can add a call to the
method to the event of the element, as shown here:

You could also make the request in the attribute of a button, as you can see in the
following line:

Requesting the web service will result in a response that contains either the results of the request or
an error message.

Receiving the response
The web service will respond to the request in one of two ways: it will provide a valid response, or
it will notify the application that a fault occurred. You can specify handlers for the of an
operation by adding the attribute to the opening element, as shown here:

You can track events from the element, as shown in the following
code block:

You’ll need to write ActionScript functions of the same name. In the preceding example, the
 function receives a as an argument, while the

function receives a .

If you want to avoid writing ActionScript, you can also bind the response—whether it’s a or
—directly to another component.

Accessing the reply
As with the element, you can identify the returned results from the web service by
accessing the property of the operation. If the request returns a single parameter, it’s also
possible to access the response using the method:

If the response returns more than one parameter, you can use the name of the returned parameter to
identify which value to display.

336

CHAPTER 10

Again, you must use the operation name to specify which result you’re identifying. This is still the case,
even if you’ve included only one operation in the element.

You’ll process the response in the function either with ActionScript or by using a
binding expression in another component. A simple binding expression follows:

You’ll see examples of both approaches in this chapter.

Understanding the resultFormat of an operation
The web service provides a result in the property of the operation. By default, the data
that the web service returns is represented as a simple tree of ActionScript objects. You can also use
E4X expressions to access the results; in this case, you’ll need to declare the of the
operation as .

The indicates how you’ll access the response from the web service. In E4X expressions,
the property is equivalent to the root element, so you wouldn’t include it in the path. If
you accept the default setting, you’ll need to include the name of the root element in
the path.

Be very careful before using a of , as you will probably need to deal with namespaces
in the response. If the web service response contains a default namespace, you’ll need to write some
additional ActionScript declaring the namespace.

For example, the following opening element of a web service response contains the default namespace
. The default namespace doesn’t have a prefix and appears in bold in

the following code block:

To work with the result using E4X expressions, you would need to specify that you wanted to use the
default namespace in an block, as shown here:

337

CONSUMING WEB SERVICES WITH FLEX

Handling errors
You can handle errors from the web service in the function. This function receives a

 as an argument, and you can access the property of the event. If you wanted to see
a representation of the error, you would use the following code:

You can add this property to the attribute of the element, as shown in the
following line:

This example displays the error message in an Alert control.

That’s enough of the theory. We’ll work through an example so you can see the different ways to
consume a web service.

Working through a tag-based example
This example demonstrates how to consume a web service that provides currency conversion services.
The WSDL file for the web service is located at

. Figure 10-1, earlier in the chapter, shows this WSDL file viewed in a web browser.

We’ll use the operation. This operation takes two parameters: the abbreviations of
the currencies to convert from and to. These parameters are called and .
The WSDL file provides a long list of currency abbreviations that you can use. The operation returns
a number called , but because it returns only a single value, you can use the

 method to access it.

1. Start by creating a Flex project with the name and location of your choosing. Create a new
application file with the following interface:

338

CHAPTER 10

The application contains two ComboBox controls, which you’ll populate with names of the
currencies available for conversion. The data associated with each name will be the currency
abbreviation.

The interface also contains a TextInput control, so that the users can enter the amount of cur-
rency that they wish to convert. There is a Convert button to carry out the operation, and a
second TextInput control to display the converted amount.

Figure 10-2 shows how the interface appears when you run the application in a web browser.

Figure 10-2. The currency converter interface

2. You need to add the list of currencies to convert from and to. You can see the full list of all abbre-
viations available to the web service at

. However, for simplicity, this example uses a small number of these
currencies. Feel free to expand on the list if you like.

Modify the element as shown here in bold:

339

CONSUMING WEB SERVICES WITH FLEX

The control includes a showing a default value to the user. The
code also has an element containing an of values. Each value is
an element containing and properties. The will display in the
ComboBox, while the abbreviation provides the .

3. Make the same modifications to the control, adding a and
element.

The code populates both ComboBox controls with the same list of currencies. You may wish to
add your own currency if it isn’t covered here.

I could have used a more streamlined approach to populating both
ComboBox controls with the introduction of an ActionScript and
a binding expression. However, in this case, I wanted to show a purely
tag-based approach, rather than introducing scripting. You’ll see how to
populate the controls with ActionScript in this chapter’s second example.

Figure 10-3 shows the interface after populating the ComboBox controls with a list of curren-
cies. In the figure, I’ve expanded the first ComboBox.

Figure 10-3. Populating the ComboBox
controls with currency values

4. The user will enter the amount to convert in a TextInput control. You need to add some valida-
tion for the Amount value to make sure that the user enters a valid number before the appli-
cation carries out the conversion. If you don’t do this, you’ll generate errors when you try to
multiply a nonnumeric value by the conversion rate returned from the web service.

340

CHAPTER 10

Add the following element below the opening tag:

The checks that the entry in the Amount TextInput control is a number. The
 property indicates that the control must have an entry before the user’s entry is con-

sidered valid.

The validation occurs when the user clicks the Convert button, because the code specifies the
 event of the bound control as the trigger. If the entry contains invalid char-

acters, the application displays the message Please enter a number.

Figure 10-4 shows the effect of an invalid entry in the Amount field. The control is highlighted with
a red border, and the error message appears when the user moves the mouse over this area.

Figure 10-4. The application validates the entry in the Amount
TextInput control.

5. You’ll make the web service request using an tag. Add the following tag
above the opening element:

The code creates an element with the of . This web ser-
vice uses the WSDL file that I provided earlier. When requesting the service, the application will
show a busy cursor while the request is in progress. The web service includes a fault handler
that displays the property in an Alert control.

341

CONSUMING WEB SERVICES WITH FLEX

The web service identifies a single operation: . This operation requires two
parameters: and . These values are bound to the properties of
the selected items in the two ComboBox controls.

6. The web service request will occur when the user clicks the Convert button. Clicking the button
also invokes the to check that the conversion amount is valid. The conver-
sion will stop if this amount is invalid.

Modify the element as shown here in bold:

When the user clicks the button, the application calls the method of the
web service operation .

7. The last step in completing the application is to display the converted amount in the Converted
amount TextInput control.

Modify the control as shown in the following code. The new attribute,
, is shown in bold.

Unfortunately, this binding expression looks cumbersome and a little difficult to interpret.
That’s because the code binds the results of a calculation to the property of the TextInput
control. The expression must treat the values as numbers during the calculation, but treat
them as data to display the result in the TextArea control.

As always, the binding expression appears inside curly braces. The expression finds the returned
rate and casts it as a using the following expression:

The returned rate is found by converting the property using the
method.

The code casts the expression as a because, even though the WSDL file indicates that
the data type is , the web service content is returned as an object. The code needs to
convert this to a to access the returned value.

The following expression finds the amount to convert. The expression treats the value entered
in the Amount control as a .

The bound expression multiplies both of these numbers together and casts the result as a
 so it can be bound to the property of the TextInput control.

You can omit the casting, and the example will still work. However,
it’s best practice to explicitly cast the data type rather than relying on Flex
to do it for you.

342

CHAPTER 10

8. You can now run the completed application. Select two currencies, and enter an amount for
the conversion. Figure 10-5 shows the result of a successful currency conversion.

Figure 10-5. The completed application

You can also test the error-handling capability of the application. Figure 10-6 shows the results
of clicking the Convert button without selecting either currency.

Figure 10-6. Displaying an error in the web service request

The application displays an Alert control with an error message. In this case, it says HTTP request
error. You could also include a more descriptive message in the function.

The complete code for this application follows:

343

CONSUMING WEB SERVICES WITH FLEX

344

CHAPTER 10

You can find the completed file saved as with the chapter resources.

Before we work though a scripted version of this example, let’s explore the class.

Working with the WebService class
The class is in the package. It works in a very similar way to
the tag, except that the property isn’t available to the class.
The class works with the class, which describes the operations available to the
web service.

Let’s look at the properties, methods, and events of the class. Then I’ll cover some
relevant points about web service operations.

Properties of the WebService class
Table 10-1 shows the most commonly used properties of the class.

Table 10-1. Properties of the WebService class

Property Data type Description Default value

Indicates how to handle multiple calls to the
same service. Choose from , ,
and .

Provides the description of the service.

Returns the SOAP headers registered for the
web service.

Specifies the port to use with the web service.

Indicates whether the web service is ready for
requests.

Specifies which remote operation the web service
should use.

Specifies the location for the WSDL for the web
service.

345

CONSUMING WEB SERVICES WITH FLEX

For simple web services, you’ll most commonly use only the property to set the location of the
WSDL file for the web service. For that reason, I won’t go into detail about the other properties, with
the exception of .

The property determines how to deal with multiple requests to the web service. The
default value of indicates that the application can call the web service more than once. A
value of means that only one request can be made at a time and that a fault is generated when
more than one request occurs. The value means that a new request cancels any earlier request.
You would change from the default value only if you wanted to restrict the application from making
multiple requests.

The class also has a number of methods.

Methods of the WebService class
Table 10-2 shows the main methods of the class.

Table 10-2. Methods of the WebService class

Method Parameters Description Returns

Determines if the web
service is ready to load the
WSDL file

Disconnects from the web
service and removes any
pending requests

Nothing

Returns the operation
specified from the web
service

Loads the WSDL for the
web service

Nothing

Constructor that creates
a new web service

Nothing

When working with simple web services, you’ll most likely use only the constructor and
methods. You can either pass the URL of the WSDL file with the method or set the
property prior to calling the method.

Let’s move onto the events dispatched by the class.

Events of the WebService class
The tag dispatches a number of events, as summarized in Table 10-3.

346

CHAPTER 10

Table 10-3. The events dispatched by the WebService class

Event Type Description

Dispatched when a call fails

Dispatched when the call is invoked, providing an error isn’t
encountered first

Dispatched when the WSDL loads successfully

Dispatched when a call returns successfully

Of these, you’re most likely to use the and events.

Before we move on, it’s worth looking briefly at the class, which works with the
class when consuming a web service.

Understanding the Operation class
The class is in the package. It describes the operation at the web service, and
it’s an integral part of requesting a web service. It’s important to understand the methods, properties,
and events of the class.

Properties of the Operation class
Table 10-4 shows the most important properties of the class.

Table 10-4. Properties of the Operation class

Property Data type Description Default
value

Contains the arguments for the operation.

Determines if whitespace should be ignored
when processing a SOAP request or response.

Contains the result of the last call to the
operation.

Determines the type of the result object
where the web service defines multiple
parts in the output message.

The name of the operation.

The encoding for the result.
The choices are , , and .

Provides access to the service that hosts
the operation.

347

CONSUMING WEB SERVICES WITH FLEX

Most of these properties are self-explanatory, but a few need a little more explanation:

: The property contains the parameters that will be passed to the opera-
tion when the application calls the method. If the method also includes its own
parameters, the property is ignored.

: The property has the possible values and
. The value indicates that the will be an containing properties

that correspond to each output part. A value of means that is treated as an
array. The output part values are added to the in the order they occur in the SOAP
response.

: The property determines how the result from the web service is
provided to the application. The default value, , means that the XML content is placed
into an object structure as detailed in the WSDL document. Using means that you can use
E4X expressions to access the content. The value is used for ActionScript 2.0–type XML
documents.

The class also has a number of methods.

Methods of the Operation class
Table 10-5 shows the main methods of the class.

Table 10-5. Methods of the Operation class

Method Parameters Description Returns

Cancels the last request
or the request with the

 passed to the method.
Prevents the or

 method from being
dispatched.

Sets the property
to . Useful when the

 is a large object that
is no longer being used.

, Constructor method. Creates
a new .

Nothing

Executes the operation,
passing any arguments inside
the method with the call.

These methods are self-explanatory, so let’s move on to the events of the class.

348

CHAPTER 10

Events of the Operation class
The class dispatches the events summarized in Table 10-6.

Table 10-6. The events dispatched by the Operation class

Event Type Description

Dispatched when an call fails.

Dispatched when an call returns with SOAP headers in the
response. A is dispatched for each SOAP header.

Dispatched when an call returns successfully.

These events work in the same way as for the web service. You set an event listener for each event and
respond appropriately when they are dispatched. It’s possible to set a listener for a and
on both the web service and the operation.

The event of the responds to a web service failure where the fault isn’t handled by
the operation itself. If the operation handles the fault, it will dispatch its own event.

Next, let’s look at the process that you’ll need to follow to consume a web service using
ActionScript.

Consuming a web service with ActionScript
The steps to consume a web service in ActionScript are much the same as those used in the tag-based
approach.

1. Create an instance of the class, providing a valid property.

2. Optionally, add a metatag if you want to bind the results of the web service to
other controls.

3. Specify the web service operation and identify the arguments to send.

4. Call the method of the web service operation.

5. Process the response from the web service.

Let’s work through the process in more detail.

Creating the web service request
To start the process, you would create a new object using the constructor method, as
shown here:

If you want to bind the results from a web service request made with ActionScript, you’ll need to use
the metatag when you declare the object, as shown here:

349

CONSUMING WEB SERVICES WITH FLEX

This metatag will allow you to use binding expressions in curly braces for the bound properties of your
other components. For example, you might want to bind the directly to the property
of another component.

You can use the method to specify the URL for the WSDL file, as follows:

You can also set the property first and call the method without passing the URL as
an argument.

Specifying the operation
It’s a little more complicated to specify the operation in ActionScript compared with using
the element. You can add an operation by creating an object, as
shown here:

An represents the operation on the web service. As you can see, you need to declare an
 object first, and then associate it with the web services request, passing a for the

name of the operation.

You can set the arguments at the same time using the property. In this case, each of the
arguments for the operation must be created as properties of an . You can then set that
as the property of the web service request, as shown here:

It’s also possible to pass the arguments inside the call to the method, which you’ll see in the
next example.

Making the request
In ActionScript, it’s simple to make the request for the web service. You use the name of the web
service and call the method.

350

CHAPTER 10

You can also call the operation directly as a method of the web service, as shown in the next line:

If you use the second approach, you can pass the arguments directly with the operation or with the
 method of the operation. The following two lines are equivalent:

Remember that passing arguments directly with the operation overrides any arguments set as the
 property of the operation.

Receiving the response
The method assigns event handlers for the and events. You would
use the method as shown in the following code block:

The event handler function, , receives a as an argument. The
 handler function receives a . You can use properties of each event to access infor-

mation from the web service.

You can also assign event handlers to the operation itself. This process allows you to respond directly
to any errors that occur in the operation itself, rather than from the web service.

Accessing the reply
You access the reply from the web service in much the same way as you do in the tag-based approach.
You need to use the property of the operation. If the operation returns a single value, you
can access the response with the method, as you saw earlier.

You can also use the name of the returned parameter to identify which value to display from the
response.

As I mentioned earlier, it’s important to consider the property of the operation. By default,
the web service returns data as a simple tree of ActionScript objects. If you want to override this set-
ting, you can declare the of the operation as so you can use E4X expressions.

351

CONSUMING WEB SERVICES WITH FLEX

It’s important to remember that in E4X expressions, the property is equivalent to the root
element, so you wouldn’t include it in the path. If you accept the default setting, you’ll
need to include the name of the root element in the path.

You’ll also need to consider the effect of namespaces if you’re using a of . As I men-
tioned earlier, if the web service response contains a default namespace, you’ll need to indicate that
you wish to use the namespace with the following ActionScript:

Understanding returned data types
One advantage of using the class is that many of the built-in data types specified in the
WSDL file are converted to ActionScript 3.0 data types. For example, if the WSDL file specifies a return
value that uses the data type , Flex recognizes this value as an data type once the content
is loaded.

This operates differently from a object or an object, where all element and
attribute values are treated as values. Bear in mind, though, that custom data types won’t have
an equivalent value in ActionScript.

Table 10-7 shows how the data types listed in the WSDL document convert to ActionScript 3.0
data types.

Table 10-7. ActionScript conversions of SOAP data types

SOAP data type ActionScript data type

In our example, the returned data type is , which doesn’t have an ActionScript 3.0 equivalent.
This means that the value will be treated as a .

Handling errors
As you saw earlier, you can handle errors from both the web service and the operation using a
event handler function. Both functions receive a as an argument, and you can access
the property of the event. You can see the message using the property, as
shown here:

352

CHAPTER 10

We’ll work through the same example that you saw earlier using a scripted approach. This time, we’ll
use a custom class to handle the web service request.

Working through a scripted example
We’ll revisit the example from earlier in the chapter using ActionScript. We’ll use the same interface
but work with a custom class to access the web service.

1. Start by creating an ActionScript class in the project you created earlier using File New
 ActionScript Class. Give the class the name CurrencyConverter and add it to the package

xmlUtilities.

The file should contain the following code. Don’t worry if Flex Builder has used a slightly differ-
ent arrangement for the opening curly braces.

2. Modify the class file to make it bindable by adding a metatag above the class
declaration. This metatag makes all public methods of the class file available for use in binding
expressions in the application file.

3. If you would like, you can add the following statements below the package declara-
tion. These statements reference the class files that the application will need to use. They will
also be added automatically as you complete the class file. If you choose to skip this step,
please double-check that all of the statements are present when you’ve finished creat-
ing this class.

4. Add the following private variable declarations underneath the class file declaration.

The object refers to the object. The variable refers to the opera-
tion on the web service. The stores the rate returned by the operation.

5. Now it’s time to create the constructor method for the class. Modify the
constructor as shown here in bold:

353

CONSUMING WEB SERVICES WITH FLEX

The constructor method starts by creating a new object. It then sets the value of
the property to the URL for the web service. It calls the method of the
object to load this WSDL file.

The method finishes by adding event handlers. It adds a and event handler to the
web service. You’ll add these private methods next.

6. Add the following private methods:

The method sets the variable from the returned result. It uses the
, which you’ll set when the application specifies the operation to call. Notice that

the code refers to the operation using , because it can’t use the
value as part of a path created with dot notation.

The method then dispatches a new . The method dispatches a
new with default values for arguments and includes the object so the user
can see the provided .

7. The next step in building the class file is to provide a public method that will call the operation
on the web service. Add the method now.

The method takes the operation name, from-currency value, and to-currency value as argu-
ments. It calls the operation using the method and passing the values. Again, you’ll
notice the use of the expression to deal with the operation name.

8. The class file will provide two public methods to the user to access the rate, depending on
whether the user provides an amount to convert. The first public method, , will
return only the rate. The second method, , will accept a value and perform a conver-
sion of this value based on the returned rate. It will return the converted amount.

Add these methods now.

354

CHAPTER 10

That’s it for the content in the class file. The complete code follows, so you can check your
version against mine.

355

CONSUMING WEB SERVICES WITH FLEX

9. Now you need to build an application that will use this class to query the web service. Create a new
application file with the name of your choosing. I’ve called my file .

10. Modify the file to display the following interface:

Figure 10-7 shows how this interface appears.

Figure 10-7. The Currency Converter
application interface

It’s very similar to the first exercise, except that you’ve added prompts to the ComboBox com-
ponents from the beginning.

356

CHAPTER 10

11. Add a attribute to the opening element, as shown in
bold in the following line:

The function will set up the application after the interface has finished creating.

12. Add the following block beneath the opening element. The
script block contains the function, as well as other ActionScript that you’ll need to
set up the application.

This block starts by importing the classes you’ll need to refer to in the applica-
tion. Again, you can allow Flex to add these classes automatically if you prefer.

These classes include the class, needed for the handler; the
 and , needed for the server response; and the

customer class that you created in the first part of the exercise.

The second-to-last statement references the class for the Alert control, which you’ll use
to display user messages. The final statement refers to the class ,
which you’ll need for the you’ll add a little later.

The code includes the declaration of the new object called . It also
declares a , which you’ll use to populate the currencies in the ComboBox
controls.

The function follows. It receives a as an argument and returns nothing.
It creates a new object. It adds event listeners for the and
events of the object. The code also includes empty function declarations
for these two handler functions.

357

CONSUMING WEB SERVICES WITH FLEX

13. The next task is to populate the ComboBox controls with the list of currency values. You need
to assign values to the and then associate this as the
property for both ComboBox controls.

Modify the function as shown in bold here:

The new line calls the function, which you’ll add next.

14. Add the function:

This function adds values to the using the method. Each line adds
an to the , consisting of a and property. This example uses the same
values that were used in the first exercise.

Once the is populated with the seven currencies, it sets the as the
 for both the and controls. If you test the application at this

point, you’ll see that both controls contain a list of currencies.

15. The application will use a number validator to ensure that the user enters a valid number value
into the Amount field. The application will proceed with the conversion only if the entry is valid,
so it will use a slightly different process than the one used in the first example.

Add the following below the closing tag:

This doesn’t require an entry in the control. If there is no entry, only
the exchange rate will display. Otherwise, the application will calculate the converted amount.

When the user makes an entry, if the entry includes nonnumeric characters, the error message
Please enter a number displays. Validation occurs when the user clicks the Convert button. If the
entry is valid, the application calls the method, passing a . If
the entry isn’t valid, the application clears any entries in the control.

358

CHAPTER 10

In this version of the application, clicking the Convert button doesn’t call the web service.
Instead, it calls the validator, which in turn calls the web service if the entry is
either blank or a valid number.

Figure 10-4, earlier in the chapter, shows the effect of an invalid entry in the Amount field.

16. To respond to the event of the , you’ll need to add the
function that you referenced earlier.

This function creates variables for the selected From currency index (), and
the selected To currency index (). It tests that the user has selected both
currencies by comparing the properties with the value .

If an index is selected for both ComboBox components, the function calls the
method of the object, passing the operation name and the from-currency
and to-currency arguments.

If the user hasn’t selected currencies, the block displays an Alert control with the mes-
sage Select currencies to convert before clicking the Convert button. Figure 10-8 shows the
message that the user will see in this case.

Figure 10-8. Clicking the Convert button without
selecting currency values generates an alert.

17. Once the call to the web service is made, the and event handlers need to be
configured to deal with the server response. Modify the handler as shown here:

359

CONSUMING WEB SERVICES WITH FLEX

The function receives a object as an argument. It starts by
identifying the entry in the control. If there is an entry in this TextInput component,
the application will convert the supplied value into the new currency. It does so by calling the

 public method of the class, passing the amount cast as
a .

The application assigns this value to the property of the control.
Notice that it uses the constructor to cast the returned calculation as a .

If the user has not entered an amount to convert, the application calls the method
of the . It places the call inside the constructor method to cast it
appropriately before assigning it to the property of the TextInput control.

18. The application also needs to respond to a fault in the call to the web service. It will do this by
displaying an Alert control with the relevant error message.

Modify the handler as shown in the following code block:

The function receives a as an argument. It displays the
 property of the passed object in an Alert control. Figure 10-9 shows

the effect of this function.

Figure 10-9. The application displays an alert
when notified of a fault.

I generated the error by changing the value of the property to a nonexistent URL. You
could assign your own custom error message instead, if you want to display something more
descriptive.

360

CHAPTER 10

Well done—you’ve completed the application file. The complete code follows, so you can
check it against your own version:

361

CONSUMING WEB SERVICES WITH FLEX

362

CHAPTER 10

19. Test the application and select conversion values. Enter an amount to convert and click the
Convert button. You should see the converted amount in the interface, as shown in Figure 10-10.
You can also test the application without entering an amount to convert.

Figure 10-10. The completed application
showing a sample conversion

You can find the completed files for this exercise saved with the other chapter resources.

As I explained earlier, the property isn’t available to the class. You might
have noticed that, when you clicked the Convert button, there was nothing in the interface to indicate
that the call was in progress. You might wish to extend the example to deal with this situation, perhaps
by displaying a message or image to the user. I’ll leave that up to you.

There is one more approach you can use to consume a web service with Flex: the Web Service
Introspection wizard.

Using Flex Builder to manage web services
The Web Service Introspection wizard manages the process of consuming a web service. The wizard
generates the ActionScript classes you need to consume that web service. You can see an example
of how to use the wizard in the Flex article at

. The example that we’ll work through here demonstrates that the Web Service Introspection
wizard makes connecting to a SOAP web service very easy.

A word of warning here. I’m certain that the wizard works well with simple data types
such as and types. However, I had difficulty getting the wizard to work
with a custom data type for the web service in the example that you’ll see shortly. In
the end, I made some modifications to the classes generated to switch from using a
custom data type to work with a type.

Let’s see how to use the Web Service Introspection wizard to connect to the currency conversion web
service.

363

CONSUMING WEB SERVICES WITH FLEX

Working through the Web Service Introspection wizard
You can access the Web Service Introspection wizard by choosing File Import Web Service (WSDL).
In the first step of the wizard, you need to choose a location for the generated classes, as shown in
Figure 10-11. In this example, I’ve chosen the same location used for the earlier examples in this chap-
ter. Feel free to select a different source for your generated files if you wish.

Figure 10-11. Selecting the source folder for the generated classes

After clicking Next, you’ll be asked for the location of the WSDL file for the web service. Figure 10-12
shows the settings for our example.

I’ve specified that I’ll get the details directly from the web service and provided the location of the
WSDL file. If you want to use this example outside the Flex environment, the web service will need to
have a cross-domain policy file allowing access to the SWF application. Luckily, the web service chosen
here provides the policy file.

In the final step of the wizard, you need to select the operation and port. The wizard will identify the
names of all services and operations available at the web service. In Figure 10-13, you can see that the
service CurrencyConvertor is available. In fact, no other services are available at the web service used
in the example.

364

CHAPTER 10

Figure 10-12. Providing the WSDL file location

Figure 10-13. The final step of the Web Service Introspection wizard

365

CONSUMING WEB SERVICES WITH FLEX

The wizard also asks for the port to use. This setting equates to the method of connection for the web
service. In the case of this web service, you can access the operation in three different ways: by using
SOAP, by using an HTTP request, or by using an HTTP request.

In Figure 10-13, you can see that I’ve left the CurrencyConverterSoap option selected. I’ve also speci-
fied that I want the operation ConversionRate. No other operations are available at this web service.

The wizard specifies that it will create the classes in the package and that the main
class will be . Click Finish to generate the required classes. Figure 10-14 shows all
of the classes generated by the wizard.

Figure 10-14. The classes generated by the
Web Service Introspection wizard

Flex Builder generates a lot of classes to consume this web service! The main class that you need to
work with is the class. This class makes all of the web service calls, so you
won’t need to use the class.

Managing web services
Once you’ve worked through the wizard, you can manage an application’s web services using the
Manage Web Services dialog box, as shown in Figure 10-15. Choose Data Manage Web Services to
open this dialog box.

Figure 10-15. Managing existing web services

366

CHAPTER 10

The Manage Web Services dialog box allows you to add a new web service, update an existing WSDL, or
delete a web service. If you choose the update option, you’ll be taken back to step 3 of the wizard to
specify the service, port, and operation. Flex Builder will then regenerate the classes for the web service.

Consuming the web service
Before we proceed with the examples, you’ll need to make some changes to the generated classes.
When I tried to use the generated code, I came across some difficulties with the custom
data type. In the end, the only way I could solve the problem was to change the data type of the two
currencies sent to the web service from the type to the type.

I made the changes in the following locations, and you’ll need to do the same if you want to work
through the examples yourself:

Within the file, modify the public function . Change
this line:

to read as follows:

Make the same change in the and files.

In the file, change the variable declarations in the
 method as shown in bold here:

Be aware that if you regenerate the classes using the wizard, you’ll overwrite these changes.

Now that we’ve addressed these difficulties, I can show you how to use the generated classes to
consume the currency converter web service. You have two choices about how to do this: you can
either use MXML tags or write ActionScript. I’ll demonstrate both approaches using a cut-down
version of the previous example. This version will show the conversion rate for a single exchange.

Using MXML tags with the generated classes
In this example, we’ll build an application that shows the conversion rate for a single exchange,
Australia dollars (AUD) to British pounds (GBP). I’ve purposely chosen a very simple example so you
can see how to use the generated classes in as few steps as possible.

1. Start by creating a new application file. I called mine .

2. Add the following interface elements:

367

CONSUMING WEB SERVICES WITH FLEX

Figure 10-16 shows the interface that this code creates.

When a user clicks the Show rate button, the relevant exchange rate
appears in the TextInput control.

3. Modify the opening element to include the
namespace for the new classes. The modification appears in bold.

4. Add the new element, as shown in the following code block:

The element has the and contains a ele-
ment. The arguments for the web service request appear in a
element. These are the and attributes. As explained earlier, I changed
these elements to be a data type.

The code to make the connection came from comments in the
 file. However, the sample code provided was

incorrect. The comments indicated that I should use the following code:

When I tried to do so, I got a number of errors caused by the incorrect cas-
ing of the elements. For example, the sample code indicated that I should
use , when the actual element was

.

The arguments were also incorrectly specified in the
 element. They were not written as attri-

butes of the element. Instead of writing
, the correct approach

was to use
. Luckily, Flex Builder provides code hinting for

the custom classes, so you can determine the correct code.

If you try to use the Web Service Introspection wizard, be aware that you
may need to modify the sample code provided in the main class file.

Figure 10-16.
The simplified single
currency application

interface

368

CHAPTER 10

5. The application will call the web service in response to the click of the Show rate button.
Modify the element to add a attribute, as shown here in bold:

Clicking the button calls the method of the web service.
Again, the sample code provided in used incorrect casing for this ele-
ment, so be aware that you may need to change the supplied example if you use the wizard
with your own examples.

6. In order to display the exchange rate, the application will need to bind the returned result to
the TextInput control. Change the control as shown in bold here:

The code binds the property of the TextInput control to the returned result. The applica-
tion finds the exchange rate using the property to which you’ve
applied the method. This line wasn’t provided in the code sample from Adobe, but
again, code hinting helped to locate the correct property.

7. The final stage is to test the application. Run the application. You’ll see the text NaN displayed
in the TextInput control.

Click the Show rate button to call the web service. Unfortunately,
because we’re using a scripted approach, there is no way to
show a busy cursor while the request takes place. After a short
wait, you should see the returned exchange rate, as shown in
Figure 10-17.

You might want to add an statement to the binding to hide the
initial NaN value. I’ll leave that up to you.

You can find this file saved as with your chapter resources.
The complete application code follows, in case you wish to check your own version:

Figure 10-17. The
completed application
showing the current
exchange rate

369

CONSUMING WEB SERVICES WITH FLEX

Let’s move onto a scripted version of the previous example.

Scripting the generated classes
Again, we’ll create a simple application that shows the conversion rate between Australia dollars
(AUD) and British pounds (GBP).

1. Create a new application file. In this case, I called mine
.

2. Add the interface elements shown earlier in Figure 10-16.

Clicking the Show rate button displays the relevant exchange rate in the TextInput control.

3. Modify the opening element to include a attribute, as
shown here in bold:

When the application finishes creating the interface, it calls the function, which sets
up the web service.

4. Add the following block above the opening element:

The code block starts by importing all of the generated classes using the following statement:

The code block also imports the class so the application can correctly recognize the
type of event passed to the function. It declares a variable of the type

.

The function receives a as an argument and adds an event handler to the
 element. It uses the method . The event has

one argument, which is the name of the handler function.

370

CHAPTER 10

The function receives a as an argu-
ment. The code block includes the function signature, but the function itself is empty.
Again, the instructions in the file are a little lacking. The

 method was incorrectly cased in the sample code.

5. The application will call the web service in response to the click of the Show rate button, so you
need to add an event handler that responds to the event.

Modify the method as shown here in bold:

You’ll also need to add the function that follows:

Clicking the button calls the function. This function contains a single line,
which calls the method of the web service. This method includes
the two conversion currencies as arguments. Because of the changes I made, the method call
passes these as values.

6. In order to display the exchange rate, the application will need to display the returned result in
the TextInput control.

Modify the function as shown here:

The new line sets the property of the to the returned result. The function finds
the exchange rate using the expression As with the previous example,
this line wasn’t provided in the code sample from Adobe.

7. Run the application. Click the Show rate button to call the web service. You should see the
returned exchange rate, as shown earlier in Figure 10-17.

The complete code for the application follows, and you can find this saved in the file
.

371

CONSUMING WEB SERVICES WITH FLEX

You can see that using the generated classes requires less code than was used in the previous exer-
cises. You might find this approach easier than the examples I showed earlier. However, there were
also some difficulties associated with the custom data type and the supplied sample code.
If you choose to use the Web Service Introspection wizard, you might need to modify the generated
content and sample code.

Summary
In this chapter, I explained web services and showed you how to consume them in Flex with both the

 element and class. We worked through two examples that illustrated
each approach. The first showed how to use a tag-based approach, and the second demonstrated a
class-based approach.

I also showed you how to work with the Web Service Introspection wizard. We generated custom
classes to consume the web service and used them in both a tag-based and scripted approach. I also
provided some warnings about using this approach.

In the next chapter, you’ll learn how to consume a web service in Flash. That will prove a little more
challenging, as Flash can’t access the class.

373

Chapter 11

As you learned in the previous chapter, a web service is a remote procedure that pro-
vides its results in XML format. A user consumes a web service by identifying which
operations are available and providing the correct parameters. After a successful
request, the web service sends back a response in XML format.

In the previous chapter, I showed you how to use Flex to consume a currency
conversion web service. In this chapter, I’ll show you how to repeat the process
using Flash.

As you saw, Flex can access SOAP web services using the class. The great
advantage of this class is that it can assemble the SOAP requests for you automati-
cally based on a Web Services Definition Language (WSDL) file. You’ll remember
from the last chapter that this file provides information about a web service, includ-
ing how to consume it.

Unfortunately for Flash users, the class from Flex isn’t available to Flash.
This deficiency has caused great frustration to designers and developers alike. With
Flash, two alternatives are available:

Consume the web service using the class.

Use the ActionScript 2.0 WebServiceConnector component to consume the
web service.

This chapter covers both approaches. As always, you can download the resources for
the chapter from .

CONSUMING WEB SERVICES WITH FLASH

374

CHAPTER 11

Consuming web services with the URLLoader class
It’s possible to use the class to consume a web service in Flash. However, you need to be
able to understand the WSDL file for the web service so you can determine the location of the web
service, the operation name, and the values you need to send with the request. Then you can make
the request by writing the appropriate ActionScript 3.0.

Unlike working with the class in Flex, using the in Flash is a manual process.
You’ll need to understand the web service thoroughly and write appropriate code. Using this process
can be extremely frustrating if you’re working with SOAP web services, because you’ll need to deci-
pher the WSDL file for the web service and assemble the SOAP request yourself. Luckily, in addition
to using SOAP, some web services also allow you to use and requests, which simplifies the
process greatly. We’ll explore both approaches in this section.

In broad steps, you need to work through the following sequence to use the class to
consume a web service:

1. Create an instance of the class.

2. Create a object, passing the location of the web service.

3. Add an event handler listening for the event.

4. Create the request, identifying the arguments to pass.

5. Set other properties of the if required, such as the and .

6. Call the web service using the method.

7. Handle the response from the web service.

The following code block shows an example of using the HTTP method to consume a web
service:

The first two lines of the code block tackle steps 1 and 2 of the process. The code also declares a
 object at this point. Next, the code adds the event handler that responds to the

 event, as described in step 3 of the process.

374

375

CONSUMING WEB SERVICES WITH FLASH

The two lines that follow show how to assign variables to the object. Step 4 is demonstrated as
the code then assigns these variables to the property of the . The code then sets the

 property of the request, taking care of step 5.

The code block finishes by calling the method of the object, as described in step 6. The
last lines detail a sample function, which is step 7 of the process.

Before we work through examples, you need to have a good understanding of the WSDL file for the
web service.

Understanding the WSDL file
In this section, we’ll walk through consuming the web service with a WSDL file at

, so you may want to load this URL into a web
browser and have a look. You can find a fuller discussion of the WSDL file in Chapter 10.

For your Flash application, the most important parts of the WSDL file are the methods that you can
use for its consumption. You can see the methods for consuming the web service if you work through
the file and look for the elements. In our case, you’ll see the following elements:

These elements indicate that a SWF application can access the web service using any of these three
methods: SOAP, , or . Let’s look at all three methods, starting with .

Using GET to consume a web service
You can use an HTTP request to consume a web service if the service provides that method of
access. The method sends name/value pairs in the query string, and each pair is separated by an
ampersand character. Here is an example of variables sent with a request:

The variable pairs appear after the question mark () character at the end of the URL. In the case of a
web service, you use the URL for the operation, not the URL of the WSDL file. You can find this address
in the following elements:

Here, the address is . The following elements
describe the location of the web service within this URL:

375

376

CHAPTER 11

The line in bold indicates the web service is accessed by adding the folder to the
web service location. Putting these elements together indicates that the web service is at the following
location:

You will need to send any parameters for this web service as part of the URL. The WSDL file indicates
that the web service needs two parameters, as shown in the following elements:

You need to send the and values. These are both types. At the begin-
ning of the WSDL file, you can see a list of acceptable values in the
element.

If you wanted to convert British pounds to US dollars, you would use the value and
the value . You would need to append these values to the URL, as shown here:

Compared to the alternatives, consuming a web service using the method in Flash is by far the
easiest of all options shown in this chapter. Even so, you can see from the preceding content that
decoding the WSDL file to find the relevant elements is quite a difficult process. I guess you know why
Flash designers and developers are unhappy that they don’t have access to the class!

It’s harder to use a method to consume a web service or to assemble a SOAP request manually.
In a request, all you need to do is to modify the URL for the web service to include the parameters
to send. In a request, you need to assemble the parameters in a object and change
the property for the object.

In a SOAP web service, you must create the XML content for the request yourself. In my experience,
this is harder than it looks!

377

CONSUMING WEB SERVICES WITH FLASH

Don’t forget that consuming a web service loads data from a source in a different
security sandbox from the SWF application. If you want to test the example outside
Flash, the web service will need to provide a cross-domain policy file allowing access
to the SWF. Where no policy file exists, you’ll need to proxy the content locally using a
server-side file. You can find out more about Flash Player 10 security in Chapter 5.

Let’s work through a simple example of how to consume the currency converter web service using
a request. As in the previous chapter, this exercise consumes the web service that converts from
one currency to another. The user will provide both the from and to currencies, as well as an amount
to convert. We’ll use the method to consume the web service, and the application will use proce-
dural code. If you prefer a class-based approach, feel free to modify the code.

Working through a GET example
The WSDL file for this web service is at .
You can find a full discussion of this WSDL file at the start of Chapter 10.

1. Open the starter file . Figure 11-1 shows the interface.

Figure 11-1. The interface for the currency converter application

The application contains two ComboBox components, which the application will populate with
a list of currencies. It contains a TextInput control for the user to enter an amount, as well as a
Convert button and TextInput control in which to display the results. To the right of the com-
ponents is a dynamic text field for displaying messages to the user.

2. Start by configuring the ComboBox controls, in a function called . Add a new layer
called actions and enter the following code:

The code starts by importing the class. This is necessary because the application
will use a object to populate the ComboBox controls. The code then calls the

 function and includes a action. The function follows. It contains
one line: a call to the function, which will load the ComboBox compo-
nents. You’ll add this function next.

378

CHAPTER 11

3. The following function adds currencies to both ComboBox compo-
nents. Add it now.

This function starts by declaring a new object called . The next eight lines
populate this object using the method. Each new item is an object containing a

 property and a property.

Except for the first item, all other items use an abbreviation for the value. This abbrevia-
tion is required by the web service. The first item contains a representation of the value
. I’ve purposely made this value a to be consistent with the other values.

As with the Flex examples in the previous chapter, I’ve chosen only a small subset of the cur-
rencies available to the web service. If you want to see a complete list of all currencies avail-
able, open the WSDL file in a web browser and look for the
element near the top of the file. Feel free to add other elements if your country is not
represented.

4. Test the application now, and you should see the two ComboBox controls populated with a list
of currencies. Figure 11-2 shows how the application should appear at this point.

Figure 11-2. The application showing
a populated ComboBox control

The name of the currency displays in the ComboBox. The property of each value contains
the abbreviation for that currency.

379

CONSUMING WEB SERVICES WITH FLASH

5. The next task is to configure the Convert button to call the web service. Add the following
event listener function to the function:

The method adds the handler function. Clicking the button will call the
 function, which follows. Add this function to the actions layer.

You’ll modify this function shortly. To start with, the function tests entries from the user. The
first two lines find the selected values from the ComboBox components and the

 control.

The function checks that the user has selected values for both ComboBox controls. It does this
by comparing the with , which is the of the Choose... item in
each ComboBox. If the user hasn’t made a selection, the value will be .

If the user has selected a value, the code checks that there is an entry in the
TextInput control. It checks the length of the entry to make sure it is greater than . If so, the
function checks to see that the value entered in the control is numeric.

At each stage of the function, a message displays in the dynamic text field. You’ll
replace the Good to go! message with the code to call the web service in the next step.

380

CHAPTER 11

6. At this point, test the application to make sure that you’re seeing the correct messages.
Figure 11-3 shows the message that should appear if the user clicks the Convert button without
making any selections. You should also test for a blank or nonnumeric Amount entry.

Figure 11-3. The clickHandler() function displays an error message.

7. Next, you need to modify the function to call the web service. In this example,
it will send the values to the web service using by modifying the URL.

Replace the line in the function with the
following lines, which clear any existing message and call the function:

The second line calls the function, passing the and
 values.

Add the following function. I’ll explain it after the listing.

The function starts by declaring a variable for the location of the web service. The
location is at , as I
explained earlier in the chapter. The URL also includes the variables to send. They are listed as
name/value pairs after the question mark ().

The function then declares a object called , passing the
value as an argument. It also declares a object called .

381

CONSUMING WEB SERVICES WITH FLASH

The function adds three event listeners to the : one for the event; one for
the event, in case there is a problem with the web service; and one for the
event, following the progress of the call. I’ve added the third event listener to show you the
types of messages that the web service can return.

The function calls the method of the object, passing the .
It finishes by displaying the message Contacting web service to the user.

The function doesn’t need to set the of the to , because that’s the
default method. It doesn’t need to create a object to pass the variables, because
the variables are added to the end of the web service URL.

8. Add the event handler functions that follow:

The first function, , processes the web service response and calculates
the converted amount. It finds the returned value as an object using the expression

. The web service returns the following XML document structure:

The function finds the rate by using the method to return only
the numeric portion of the XML document. It casts this value as a using . It
then finds the converted amount by multiplying the user-supplied amount, cast as a , by
the returned rate. Remember that the application has already dealt with nonnumeric responses
before it called the web service.

The converted amount is cast as a so the code can assign it to the property of the
 control.

The function will respond to errors in the web service. It displays the mes-
sage Error contacting web service with the value of the error. You can test this function a
little later by using an incorrect URL for the web service.

The final function responds when the web service sends back an HTTP status message. This
message indicates the status of the request. You’ve seen these types of messages when a 404
File Not Found error occurs while loading a web page. When the call completes, the status of
the request will display in the control. A successful request will provide a status
of .

382

CHAPTER 11

9. Test the application. Choose two currencies, enter an amount to convert, and click the Convert
button. Figure 11-4 shows a sample conversion from British pounds to US dollars.

Figure 11-4. The completed currency converter application

The application displays the HTTP status message to the right. Notice that it includes a
 property with a value of . The message also indicates the other properties of the

, such as its type and whether it is cancelable.

The application also displays the converted amount at the bottom of the screen. Notice that
this amount doesn’t round to two decimal places, so you may want to fix that yourself.

The complete code for this application follows, and you can find it saved in the file with
the chapter resources:

383

CONSUMING WEB SERVICES WITH FLASH

As I mentioned earlier, requesting a web service using is probably the simplest approach for con-
suming web services with Flash. Let’s turn our attention to the method next.

384

CHAPTER 11

Consuming a web service with POST
When you consume a web service using the method, you send the variables required for the
service using the HTTP method. The process is the same as sending a form to the server for
processing. In this method, the variables are sent with the page request, rather than being added to
the query string, as in the method. The next example re-creates the same functionality of the first
example using a request.

Working through a POST example
We’ll consume the same web service and send the variables using the method. If you work
through the WSDL file, you’ll see that the example needs to use the same URL as in the previous
example, but without the added variable values. The URL for the request follows:

1. Open the starter file . As this example is similar to the previous one, this
starter file already includes some code on the actions layer. In fact, the code is identical to the
application at the end of step 5 in the previous example.

The code populates the ComboBox controls and adds a event handler for the Button
control. It also tests that the user has made the required entries.

The code at this point follows, and you can refer back to the previous example for a full
explanation:

385

CONSUMING WEB SERVICES WITH FLASH

2. Replace the line in the function with a
call to the function.

Add the following lines to the , as shown in bold here:

The lines clear any existing text from the control and call the
function, passing the conversion currencies.

3. Add the function shown here to the actions layer:

386

CHAPTER 11

The function works in much the same way as the function in the previous
exercise. It starts by declaring a variable called for the location of the web
service. It then creates and objects. This time, however, the function
also creates a object, because the variables aren’t included in the URL for the
web service.

The function adds three event handlers for the , , and events.
You’ll add those functions in the next step.

The function adds the from and to currencies as properties of the object.
The object uses the names and .

The function also sets the method to to the variables to the web
service. It finishes by adding the object as the property of the request and calling the

 method of the object. The last line displays the message Contacting web
service in the dynamic text field.

4. You now need to add the event handler functions to deal with the response. There are three
functions to add: , , and . These func-
tions follow:

These functions are exactly the same as those used in the previous example. You can find a
complete explanation earlier in the chapter, at step 8 in the example.

5. Test the file and enter currencies to convert. You should see the same outcome as shown
earlier in Figure 11-4.

You can see that this example is a little more complicated than the example. The completed code
for the application follows, and you can also find it in the resource file .

387

CONSUMING WEB SERVICES WITH FLASH

388

CHAPTER 11

In this example, you saw how to consume a web service using . The example is quite similar to the
previous example, except that you pass the variables in a different way.

The final method of consuming a web service is by using a SOAP request.

Consuming a SOAP web service with the as3webservice
extension

It would be possible to re-create the previous example using a SOAP request; however, the process of
assembling the SOAP request correctly is quite a challenge. It involves creating the correct XML docu-
ment and adding headers; it can be quite a convoluted process. Working through such an example is
beyond the scope of an introductory book.

As an alternative, I’ll introduce you to an open source extension that can consume a web service for
you. Instead of assembling the request manually, you need to provide only the URL, and the class
library will generate the correct SOAP request and process the response.

The extension is an open source web service class library for Flash. It uses ActionScript
3.0 to mimic the functionality of the class available to Flex applications. You need to pro-
vide the URL for the web service’s WSDL file, as well as the operation name and arguments. The class
library builds the SOAP request and handles the response.

Without getting into too much detail, the library consists of the following three classes:

The class handles the call to the web service, including the creation of the SOAP
request.

The class manages the operation at the web service.

The is a custom event class dispatched by the class.

You’ll need all three classes to create an application that consumes a web service.

From experience, I can tell you that the extension is easy to use and greatly simplifies the process of
consuming web services from Flash. Details of the class library are at

t/. You can download the extension from Google Code at
. Both web sites include sample code for using the extension.

389

CONSUMING WEB SERVICES WITH FLASH

A word of caution here: we’ll use the class library in the following
example; however, this class library is a work in progress. The author of the extension
explained that the library isn’t complete, and he adds functionality as people request it.

At the time of writing, it was possible to use the extension to consume the currency
conversion web service for this example. You may get different results with other web
services. If you find that to be the case, I encourage you to contact the author of the
classes, Pieter Michels, via his web site.

Let’s see how to use the as3webservice class library in an example.

Working through an as3webservice example
In this example, we’ll consume the same web service that you’ve seen throughout the chapter using
the class library.

1. The first step is to download and install the extension from the Google Code
site. Switch to the Source tab, click Browse, and save the file from the
trunk build folder.

2. You’ll need the Adobe Extension Manager to install the extension. If you don’t have the
Extension Manager, download it from and
install the software.

3. Make sure Flash is not open and double-click the extension to
install it to Flash. Once the installation is complete, open the

 resource file in Flash.

Check the Components panel. You should see the wellcon-
sidered components, as shown in Figure 11-5. If you can’t
see them, you may need to refresh the panel. Click the panel
menu on the right side and choose Reload, as shown in
Figure 11-5.

4. Before you can consume the web service, you’ll need to
drag a copy of all three wellconsidered classes—Operation,
OperationEvent, and WebService—to the Library panel.
Figure 11-6 shows the Library panel for the
file. As I pointed out earlier, you’ll need all three classes in
order to consume a web service.

5. This example is similar to the previous two examples, so the
starter file already includes some code on the actions layer. The
code brings the application to the same stage as at the end of
step 5 in the first example, so we’ll pick up from that point.

Modify the line in the
 function as shown in bold in the following

code block:

Figure 11-5. The Compo-
nents panel showing the

wellconsidered classes

Figure 11-6. The Library
panel showing the well-

considered classes

390

CHAPTER 11

The new lines clear any message showing in the control and call the
 function, which you’ll add shortly.

6. The application needs to include statements for the three wellconsidered classes
contained in the extension. Add the following lines at the top of the actions layer:

You can find the names of these classes from the Library panel.

7. Add the function that follows:

This function creates a new instance of the wellconsidered class, passing the URL
for the WSDL file as an argument. Notice that I used the fully qualified name of the
class to avoid any name confusion with existing classes. The function also creates a new

 for the class called .

391

CONSUMING WEB SERVICES WITH FLASH

The function adds two event listeners: one for the event and one
for the event. These events are both part of the class.

The function calls the operation , passing the from and to currencies as argu-
ments. It finishes by displaying a message to the user that says Contacting web service.

8. The last step is to add the two handler functions that follow:

These functions work in much the same way as you saw in the previous examples. The
 function receives an object as an argument and locates

the returned XML document using the expression . It determines the exchange rate by
using the method of the object.

The function uses the same calculations that you saw previously. Please refer back to the first
example if you need an explanation.

The function responds in the case of an error. It also receives an
 as an argument. The function displays an error message to the user saying

Error contacting web service:, along with the associated with the error.

9. Test the application. You should be able to select two currencies, enter an amount to convert,
click the Convert button, and see the converted amount. You can see an example of how the
application should look in Figure 11-4, earlier in the chapter.

You can find this application saved in the file with your chapter resources. The complete
code follows, in case you want to check your work:

392

CHAPTER 11

393

CONSUMING WEB SERVICES WITH FLASH

So far in the book, you’ve seen some ActionScript 3.0 approaches to consuming a web service.
Unfortunately, Flash doesn’t have access to the same functionality that is available in Flex in the

 class, so consuming a web service is a much more cumbersome process.

There is an ActionScript 2.0 alternative that uses a data component. As with other Flash components,
this one can help to simplify the process of building SWF applications. You can drag the component
onto the stage and configure it using panel settings instead of by writing ActionScript. I’ll cover this
topic next.

Consuming a SOAP web service with the
WebServiceConnector component

Flash can work with SOAP requests using the ActionScript 2.0 WebServiceConnector data component.
You need to provide the URL to the WSDL file, and the component will generate the SOAP request for
you. You can also script the class, but that’s beyond the scope of this book.

In order to work with the WebServiceConnector component, you must
create an ActionScript 2.0 Flash file. Each WebServiceConnector com-
ponent can work with only one operation at the web service, but you
can call the same operation more than once. You need to add extra
WebServiceConnector components if you’re calling more than one
operation in your application.

You can find the WebServiceConnector in the Data section of the
Components panel of an ActionScript 2.0 document, as shown in
Figure 11-7.

As with the other ActionScript 2.0 data components, the
WebServiceConnector component has no visual appearance in a com-
piled Flash movie.

Configuring the WebServiceConnector
You configure the WebServiceConnector component using the Component Inspector panel. When you
select the component in the application, you’ll see three tabs in the Component Inspector:

The Parameters tab configures the component and includes the location of the WSDL file and
operation name.

The Bindings tab indicates how user interface components interact with the WebService-
Connector.

The Schema tab shows the structure for operation arguments and returned values.

We’ll start by covering the Parameters tab.

Figure 11-7. The Data
section of the Compo-

nents panel in an Action-
Script 2.0 document

394

CHAPTER 11

Adding parameters
To begin, you must enter the settings for the web service in the Parameters tab of the Component
Inspector panel. Figure 11-8 shows the panel.

Figure 11-8. The WebServiceConnector
parameters in the Component Inspector

Table 11-1 provides a summary of the parameters in this tab.

Table 11-1. The settings listed in the Parameters tab of the Component Inspector

Parameter Type Purpose

Provides the URL of the WSDL docu-
ment for the web service.

Contains the name of the remote
procedure or method within the SOAP
port specified in the WSDL file.

 (default:) Determines whether to allow multiple
calls. A value means that a call
won’t proceed if one if already in
progress.

 (default:) Determines whether to suppress a call
if there are invalid parameters. A
value will prevent the component
from being triggered if the parameters
are invalid.

The most important parameter here is . As the name suggests, it is the path to the WSDL file
for the web service. You can either type the URL yourself or copy and paste it from another location. I
find that I’m less likely to make a mistake if I copy and paste from the address bar of a web browser. If
you’ve added the WSDL URL previously, it will appear in a drop-down list in the Value column.

When you enter the URL, Flash tries to locate the WSDL file. If it finds a valid WSDL document, it will
populate the setting with all available procedures for the web service. However, you may
need to wait a few seconds before you can see these operation names.

You normally don’t need to change the last two settings, and
, in the Parameters tab.

395

CONSUMING WEB SERVICES WITH FLASH

Determining the arguments for the operation
Once you’ve selected an operation, the Schema tab of the
Component Inspector will identify any parameters required by
the web service operation. The tab also shows the structure of
the results. Figure 11-9 shows the Schema tab after selecting the
ConversionRate operation for the web service.

In this case, the Schema tab identifies that the operation requires
two parameters: and . Both parameters
are a data type. The web service returns a single value,
called . It is a data type.

You can find out more about each parameter by selecting it and
viewing the details in the field below. Figure 11-10 shows the
details of the argument.

Adding parameter bindings
You’ll need to add bindings in two different cases:

You’ll need to bind any UI components that provide values
for the arguments for a web service operation.

You’ll also need to bind the results to display in the
interface.

The currency conversion example requires a from and to currency
as parameters. In the next example, you’ll see how to add a bind-
ing from a ComboBox to each parameter.

To add a binding that provides an argument to the web service,
click the Add binding (+) button in the Schema tab. Select a param-
eter from the params object, as shown in Figure 11-11.

Click OK to add the binding. You’ll be able to see the details of
the binding in the Bindings tab of the Component Inspector, as
shown in Figure 11-12.

When configuring a binding for an argument to a web service
operation, you’ll need to set the direction to in, as the component
is sending the value to the parameter. In the bound to section,
select the component that will supply the value for this param-
eter. You need to click inside the bound to Value column so you
can see a magnifying glass icon. Clicking the magnifying glass icon
displays the Bound To dialog box, as shown in Figure 11-13.

Figure 11-9. The Schema tab
available after selecting an

operation

Figure 11-10. Details of
the FromCurrency argument

for the ConversionRate
operation

Figure 11-11. Adding a
parameter binding

396

CHAPTER 11

Figure 11-12. Selecting a
component for the binding

Figure 11-13. The Bound To dialog box

Select the component that will supply the value to the parameter. In Figure 11-13, I’ve selected the
 control. The Schema location list on the right side of the dialog box shows the available

properties for binding. The figure shows that value is selected.

If necessary, you can specify a fixed value for any parameters that won’t vary. You would need to do
that to send a developer token or ID with your request. For example, to consume the Amazon web
service, you need to apply for a developer token, which is an alphanumeric value a bit like a personal
identification number (PIN). Each time you consume the Amazon web service, you need to send the
Amazon developer ID with the request. To add this to your application, instead of selecting a compo-
nent in the Bound To dialog box, check the Use constant value check box and enter the value.

Bear in mind that storing a fixed value within Flash is not very secure. If you are con-
cerned about security, a better approach is to request the value from a server-side file
or load the token with the page hosting the Flash movie.

397

CONSUMING WEB SERVICES WITH FLASH

You can also specify a formatter in the Bindings tab if you need to format the value before sending it
to the web service. You might do this if you need to add some extra text with the user-entered value,
or if you need to access more than one value from the data provider of a component, perhaps a
DataGrid.

Triggering the web services call
You need to trigger the call to the web service in order to generate the request for the web service.
You can use the Behaviors panel to generate the ActionScript, or you can add the code yourself. You
would choose the latter option if you wanted to add extra ActionScript—possibly some validation of
a user entry.

When you work with web services, you’ll often add the
trigger to a Button instance. Select the Button control
and bring up the Behaviors panel with the Shift+F3
shortcut. Click the Add Behavior button, which looks
like a plus sign (+). Select Data Trigger Data Source.
This brings up the Trigger Data Source dialog box, as
shown in Figure 11-14. Remember that we’re working
with an ActionScript 2.0 component here; the Trigger
Data Source option won’t appear in ActionScript 3.0
documents.

You’ll need to select the WebServiceConnector compo-
nent to trigger. You can insert a reference to this com-
ponent with either a relative or an absolute path, by
selecting the corresponding radio button in the Trigger
Data Source dialog box. I normally choose the default
setting of Relative to create a relative path, in case I
need to rearrange my movie timelines later.

In the case of a Button instance, Flash adds the follow-
ing code, assuming is the name you
gave to the component:

As I mentioned, you could also type this ActionScript yourself, as you’ll see in the final exercise in this
chapter.

Binding the results
Once you’ve triggered the component, you’ll need to bind the results of your web service to one or
more components to display the results. Make sure the WebServiceConnector component is selected
and click the Add binding button in the Bindings tab of the Component Inspector.

Figure 11-14. Selecting the component
to trigger

398

CHAPTER 11

Select one of the results elements. These elements are the values returned by the web service.
Figure 11-15 shows the selection of a element, which is the only result returned from the web
service.

Figure 11-15. Adding a binding for
the results

You’ll need to set the direction for this binding to out, as the value comes out of the WebServiceConnector.
You must also select a component, as shown in Figure 11-16.

Figure 11-16. Binding a result to a component

Figure 11-16 shows a simple binding from the result to the property of a TextInput
component. This binding displays the returned result in the TextInput control. If you want to bind
the results to a data-aware UI component, such as the List, ComboBox, or DataGrid, you’ll most likely
select a result with an data type.

399

CONSUMING WEB SERVICES WITH FLASH

Accessing the results in ActionScript
You can also use ActionScript to work with the results. In order to do this, you’ll need to add a
function that listens for the event. This event is dispatched when the WebServiceConnector
receives a response from the web service.

The response is in the property of the WebServiceConnector. You can access this property by
finding the property of the object passed to the handler function. Be careful not to confuse
the event with the property.

The following code block demonstrates how you might assign a handler function and deal with the
results. Remember that this code block uses ActionScript 2.0, because we’re working with a version
2.0 data component.

This example uses an anonymous function to respond to the event. You can also assign a
named function, as shown here:

Whichever approach you take, you will access the property with the expression
, where represents the passed to the event listener.

Viewing the Web Services panel
You can see a list of web services that you’ve worked with through the Web Services panel. Display the
panel by choosing Window Other Panels Web Services. Figure 11-17 shows the Web Services panel
displaying details of the ConversionRate operation.

Figure 11-17. The Web Services panel

400

CHAPTER 11

You can expand each web service listed in the panel to see a list of available operations, as well as the
schema for the params and results. This dialog box provides an alternative to viewing the Component
Inspector.

You can refresh all web services within the panel by clicking the Refresh Web Services button at the
top of the panel. You might need to do this if you’ve entered a WSDL URL but can’t see any operations
listed in the Parameters tab of the Component Inspector.

You can also manage the web services in the list by clicking the Define Web Services button at the top
left of the panel. This button has an icon that looks like a globe. Clicking the button displays the Define
Web Services dialog box, as shown in Figure 11-18.

Figure 11-18. The Define Web Services dialog box

You can use the plus and minus buttons at the top of the dialog box to add and remove the URLs for
the WSDL documents for each web service. Click OK to return to the Web Services panel.

You can also use the Web Services panel menu to carry out other tasks. For example, Figure 11-19
shows how to view the WSDL document in a web browser

Figure 11-19. Viewing a WSDL file in a web browser

The WebServiceConnector component will become clearer when we work through a simple example.
In the next exercise, we’ll re-create the currency converter example that you saw earlier.

401

CONSUMING WEB SERVICES WITH FLASH

Working through a WebServiceConnector example
In this exercise, we’ll use the WebServiceConnector component to consume the currency conversion
service we’ve been working with in this chapter. The WSDL file for this web service is at

.

1. Open the starter file in Flash. This is an ActionScript 2.0 document.
The interface is identical to the one in the previous examples, and you can see it in Figure 11-1
earlier in the chapter.

2. Drag a WebServiceConnector component to the application. You can place it anywhere you
like, as it does not have a visual appearance. Give the component the instance name cc_ws.

3. Select the WebServiceConnector component and open the Component Inspector panel. In the
WSDLURL field of the Parameters tab, enter the URL for the WSDL:

. Wait for the operation field to populate, and then select
the ConversionRate operation.

4. The next task is to populate the ComboBox components with currencies. Add a new layer
called actions and enter the following ActionScript 2.0 code:

The code starts by calling the function and includes a action. The
function has a single line, which calls the function. Notice that,
because the code is in ActionScript 2.0, it’s necessary to capitalize the first letter of the return
type .

The function is almost the same as the one used earlier, except that
it uses an to populate the ComboBox controls. There is no class in
ActionScript 2.0.

402

CHAPTER 11

5. Test the application now. You should see the two ComboBox controls populated with a list of
currencies, as shown in Figure 11-20.

Figure 11-20. Populating the ComboBox
components in the application

6. The application will trigger the WebServiceConnector when the user clicks the Convert button.
You’ll need to add a function that responds to the event of the button. Add the follow-
ing line to the function:

Notice that the code uses ActionScript 2.0 notation to reference the function
with .

7. Add the function that follows to the actions layer:

The function tests that both currencies have been selected. If so, it then tests that the user has
entered an amount to convert. The next statement checks that the entry is numeric.

If all entries are present and correct, the function calls the method of the
WebServiceConnector. If there are missing or incorrect entries, the function displays an appro-
priate error message.

403

CONSUMING WEB SERVICES WITH FLASH

8. Now you need to bind the values from the ComboBox components to the params of the
web service. Select the WebServiceConnector component and display the Bindings tab of the
Component Inspector. Click the Add binding button and select FromCurrency : String. Click OK.

Make sure that the binding direction is set to in. Click in the bound to Value column, and click
the magnifying glass icon. Choose the from_cbo control and select the value: String property.
Click OK.

Repeat this process for the to_cbo ComboBox. Figure 11-21 shows how the Component Inspector
Bindings tab should appear at this point.

Figure 11-21. Configuring the
bindings for the web service
operation

9. Because the application will perform a calculation with the returned value from the web ser-
vice, you’ll need to write the ActionScript to access the result. Start by adding a listener to the
WebServiceConnector. Place the following ActionScript 2.0 code in the function:

The code adds an event listener that responds to the event from the WebServiceConnector.
When the application receives a result, it will call the function.

10. Add the following function to the actions layer:

This ActionScript 2.0 function finds the values of the amount to be converted and the conver-
sion rate. It finds the rate using the expression . It multiplies these values
and displays the value in the TextInput control. The function also clears any exist-
ing messages.

404

CHAPTER 11

11. Test the movie. Select two currencies to convert and click the Convert button. You should see
the converted amount displayed in the TextInput control. Figure 11-22 shows a
sample conversion.

Figure 11-22. The completed
WebServiceConnector sample application

As with the other examples, you may want to format the returned result to two decimal places. I’ll
leave that up to you!

You can find the completed file saved as with your chapter resources. The
ActionScript for the completed application follows. Again, remember that this is ActionScript 2.0 code,
unlike the other examples in the chapter.

405

CONSUMING WEB SERVICES WITH FLASH

In this exercise, we created a simple currency converter application using the WebServiceConnector
component. The WebServiceConnector component created the SOAP request and sent through cur-
rency values from two ComboBox controls. The Flash application received a conversion value, which it
used to calculate a converted amount.

As you can see, using the WebServiceConnector component to consume a web service in Flash is sig-
nificantly easier than the ActionScript 3.0 approaches. You can see why Flash designers and developers
are disappointed that they don’t have access to the ActionScript 3.0 class that is available
to Flex applications.

Summary
In this chapter, I showed you different ways that you can consume a web service in Flash. Unfortunately,
Flash doesn’t have access to the class available to Flex applications. Instead, you can
choose from a variety of different approaches, and I showed you how to consume a currency con-
version web service using an HTTP and . I also showed you an open source extension that
provides functionality for consuming a SOAP web service.

In the second half of the chapter, we looked at how to work with the WebServiceConnector data
component. You saw how to use this ActionScript 2.0 component to consume the same currency
conversion web service.

In the final two chapters of the book, we’ll work through case studies showing how to combine what
you’ve learned so far into real-world examples. The next chapter will cover a Flash case study where
we’ll consume the Flickr web service. In the final chapter, we’ll consume the kuler RSS feed from the
Adobe web site using Flex.

407

Chapter 12

The final two chapters of this book take you through case studies so you can apply
what you’ve learned throughout the book in real-world applications. In this chap-
ter, we’ll build an application that queries Flickr and displays the photos that it
finds. We’ll use the Flickr web service to locate and display photographs and related
information.

As you probably know, Flickr provides access for people to store their photos. It also
allows users to view these photos and find out more about the photographer. You
can access the images at Flickr in a number of different ways: by searching using a
keyword, by viewing photos marked as interesting, and by seeing the most recent
photos uploaded.

The application that we’ll build will provide all of this functionality for locating images
in Flickr. It will search by keyword, display recently uploaded images, and display
interesting photos. You’ll be able to view a collection of thumbnails from each search
and click to see a large version of each one. You’ll also be able to view the image at
the Flickr web site and find out more about the photographer.

In this chapter, we’ll use Flash to build the Flickr application. We’ll use a function-based
approach for the ActionScript code, rather than working with custom classes. In the
next chapter, we’ll create an application using custom classes in Flex.

As usual, all of the resources for this chapter are available for download at
.

Before working through the example, you should have an idea of how Flickr works
and the ways in which developers can access Flickr content.

FLASH CASE STUDY

408

CHAPTER 12

Understanding Flickr
Flickr is a web site that hosts images and videos. It creates an online community that allows photogra-
phers to share their work with the rest of the world. It allows photographers to provide details about
themselves and their images.

The web site organizes images using tags to provide topic information. Visitors to the site can search
for images by keyword or browse through collections of images. Figure 12-1 shows an example of a
search for the word sunset.

Figure 12-1. Flickr allows site users to search for photos by keyword.

Users of the Flickr site can store both public and private images. The application that we build in this
chapter will access only publicly available photos.

Flickr offers an application programming interface (API) that allows developers to interact with its con-
tent. The API provides information about the procedures that developers can call at Flickr. Developers
request content in a number of different ways, and the details are supplied as an XML document.
Essentially, this provides access to Flickr as a web service.

Before you can get started, you’ll need to apply for a Flickr key.

408

409

FLASH CASE STUDY

Applying for a Flickr key
Before you can access any of the developer functionality, you need to apply for a Flickr key. This is
an alphanumeric string that you need to pass with all of your requests. You can apply for the key at

.

When you apply, you’ll be prompted whether your use of Flickr is commercial or noncommercial. For
our example, choose the noncommercial option. After you make the request, Flickr will provide you
with the key immediately. My key is a 32-character string, but I’m not going to provide you with those
details. You’ll need your own key to work through the example.

It’s possible to query the Flickr web service in several different ways.

Making a Flickr request
You can request information from Flickr using the REST, XML- RPC, or SOAP web service protocol. As
you saw in the previous chapter, consuming a SOAP web service in Flash is a little difficult, so we’ll
stick with the REST format. REST allows you to modify your request by making changes to the URL that
you query. You can select the Flickr operation by changing the URL used in the request. You can send
parameters for each request by adding name/value pairs to the end of the URL.

The format for each REST request to Flickr is as follows:

You need to replace the variable with the actual method name from the Flickr API. You
will pass additional values with each request as name/value pairs. For example, you may want to
specify how many results to return or provide a search term.

You must include your Flickr key with each request. This value is shown in bold in the following URL
with the variable name :

You’ll replace the value in the URL with your own Flickr key.

In order to make a successful request, you need to understand the Flickr API.

Understanding the Flickr API
You can view the Flickr API at . The API lists all of the opera-
tions that are possible at the Flickr web service, and you’ll see that many operations are available.

In this chapter, we’ll focus on the following operations:

: Corresponds to a request for recently uploaded images.

: Corresponds to a request for interesting images.

: Corresponds to a request for images that match a search term.

: Corresponds to a request for information about photographers.

You can see that each operation is named in a specific way that describes its purpose.

409

410

CHAPTER 12

Understanding the returned photo XML document
The , , and
operations return the following XML structure:

This response describes the photos identified by the request. The root of the response is the
element. This element contains attributes to describe which page of photos is being viewed (),
how many pages there are in total (), how many images display per page (), and the total
number of images returned ().

The response will normally contain multiple elements; I’ve shown only one here for the sake
of brevity. As you can see, each element contains its own of attributes. Table 12-1 summarizes
the purpose of each of these attributes.

Table 12-1. Flickr <photo> element attributes

Attribute Description

The ID of the photo at Flickr. This attribute is used to generate the URL for the image.

The Flickr code or user ID identifying the photo owner. You can look up this value to
find out more about the owner.

A code allowing access to the image that is used to generate the URL for the image.

The server containing the photo. This value is used to create the URL for the image.

The number of the server farm at Flickr. This value is used in accessing the image URL.

The title for the photo.

Indicates whether the image is available publicly. A value of means that this image is
publicly available.

Indicates whether the image is available to friends.

Indicates whether the image is available to family.

The operation returns an XML document with a different structure.

Understanding the returned people XML document
The operation provides information in the following XML format:

411

FLASH CASE STUDY

The element contains several attributes. The attribute indicates whether the person
is an administrator. The attribute indicates whether the person is a professional member. The

 and attributes are used to build the URL for the user’s buddy icon.

The child elements provide information about the person, and most are self-explanatory. The
 element contains an SHA1 digest of the user’s e-mail address This element is a representa-

tion of the address that does not reveal the actual e-mail address.

Information about this user’s photographs is available in the element. The
element contains the Unix date stamp of the first photo contributed by this user. The

 element contains the MySQL date and time of the first photo taken by the user.
The element indicates how many photos the user has at Flickr.

Let’s look at each of the Flickr API operations we’ll use in the example in a little more detail.

Finding recent photos
The operation returns a list of the latest public photos uploaded to Flickr.
The images returned by this operation change very quickly. You’re likely to see very different images
each time you make a request, even if your requests occur close together. As with the other opera-
tions, you’ll need to provide your API key to access the operation.

You can request additional information about each image, such as the date the image was taken
and when it was last updated, but we won’t do that in the sample application. It’s also possible to
specify how many photos to return per page. If you leave out this value, Flickr returns 100 photos
with each request. In our application, we’ll return ten records at a time by specifying the name/value
pair as part of the requested URL. The photos are organized into pages, so you can also
request a specific page number to see more photos. You use the variable in the URL to specify
which page to view.

The Flickr URL that we’ll request for this operation will look something like the following:

You’ll replace the text with your own key.

412

CHAPTER 12

You’ll notice that I’ve also added a variable at the end of the URL. The
variable will be a unique value made up of the current date and time. The variable isn’t
required by Flickr, but it will help to ensure that the web browser doesn’t cache the results, by forcing
it to request new details from the server each time. Many developers will be familiar with this trick to
prevent caching of web page content.

The next operation to examine is finding interesting photos.

Finding interesting photos
The operation returns a list of photos for the current day that are
marked as interesting. Interestingness is determined by Flickr in several different ways: by analyzing
where the click-throughs come from; by examining the photo comments; by analyzing who marks the
photo as a favorite; and by looking at its tags. You’ll need to provide your API key with this request.

You can specify a date to retrieve interesting photos from different dates. You can also specify a
date by providing a variable that uses the date format of YYYY-MM-DD for its value. As with the

 operation, you can request additional photo information, specify the number of images to
display per page, and specify the page number to return.

A sample URL for this operation follows:

Again, I’ve included a value to avoid caching.

We will also search for photos.

Searching for photos
The final operation that displays photos is . This operation returns a list of pho-
tos matching the supplied search criteria. As usual, you need to provide your API key with the request.
You can specify the number of images per request, and the page number to return. You also need to
provide a value for the variable. This is the user’s search criteria.

The operation provides a lot of options and, rather than reproducing them all of them here, I encour-
age you to view the details at . We’re
not going to specify any additional search options in the sample application.

The URL for this request will look something like the following:

You will need to replace the text with your own search keywords. Multiple keywords
are separated by commas.

The fourth operation that we will use returns information about photo owners. We’ll look at
that now.

413

FLASH CASE STUDY

Finding owner information
The operation returns information about a specific photo owner. You must
provide your API key and the of the owner who you want to research.

Your request for this operation will look something like the following:

You’ll need to replace with the ID of the relevant owner. You’ll find this value with each of the
photos you display. In fact, in our application, you’ll need to display photos before you can request
information about photo owners.

Once you’ve made a request, you’ll need to deal with the response from Flickr.

Receiving a Flickr response
Each time our application makes a request, it will receive the standard Flickr REST response. When a
successful request is made, the requested information appears inside this standard response.

The standard response from Flickr is an XML document with the root element . The root ele-
ment contains a attribute, which indicates whether the request was successful.

You will receive the following response to a successful request:

The value of indicates that you’ve successfully completed the request. The comment
 will be replaced by the returned information. In our case, this will be either a photos

XML document or a person XML document.

If your request isn’t successful, you’ll see a value of for the attribute, as shown here:

The returned XML document will provide an error code and message to help you understand where
you’ve gone wrong. You can display any error message by accessing the attribute of the
element.

The first step in processing any response from Flickr will be to check for a value of .

In our application, we’ll receive two types of results: one for photos and one for the owner details.
Let’s deal with the photos first.

414

CHAPTER 12

Receiving photo information
When your results describe a list of photos, the XML document returned inside the root element will
contain a element with one or more child elements. The structure will look some-
thing like the following block:

You’ve seen the photo XML document structure earlier in the chapter. In this example, I’ve shown only
one element, but you’re more likely to see multiple elements. Our application will return ten
results per request, so the element will contain ten child elements.

Receiving person information
If you request details of an owner, you’ll receive a response similar to the following XML document:

The details appear within a element. You can access the person’s username, real name, loca-
tion, and Flickr URLs. Again, you’ve seen this structure earlier in the chapter.

Finding the URL of a photo
You might have noticed that the element doesn’t contain a URL for the image. We’ll need this
URL if our application is to display the image.

415

FLASH CASE STUDY

Flickr requires you to build the URL dynamically from the information provided in each
element. You can find out more about how to build the URL at

. For the purposes of this example, it’s enough to know that you can use the
following format for the image URL:

Each of the dynamic values is marked in curly braces and comes from an attribute in the
element. The comes from the attribute of the element. You can find the

id, , and values in the same way. You could access the following photo:

with this URL:

I’ve marked the dynamic portions of the URL in bold.

You can also add a suffix before the file extension to specify which image size to view. For
example, to find a small square with a size of 75 pixels by 75 pixels using the previous element,
use the suffix in the URL, as follows:

Table 12-2 shows the available suffix options.

Table 12-2. Suffix options for Flickr photo sizes

Suffix Description

Small square, 75 75

Thumbnail, 100 on longest side

Small, 240 on longest side

Medium, 500 on longest side

Large, 1024 on longest side (only exists for very large original images)

Original image—a JPG, GIF, or PNG, depending on source format

Finding the page containing the photo
Our application will also identify the page containing the photo being viewed. This will allow the user
to click a button and jump to the image on the Flickr web site.

You can find the location of the page at Flickr by creating a URL made up of the and photo ,
as shown in the following line. The dynamic portions appear in bold.

416

CHAPTER 12

Well, that’s enough background information about Flickr for us to get started with the application.
Let’s build the application now.

Building the application
This SWF application, built in Flash, will allow users to access and display photos from Flickr. Users will
be able to do the following:

Search for a photo by entering a keyword

View recent photos

View interesting photos for the current day

The application will display the images in pages of ten photographs. Once users have made a
request, they will be able to page through the groups of ten images. In addition, they will be able
to view a large-sized version of each image, see its title, and click a button to view the image at the
Flickr web site.

Let’s start with the application interface.

Working through the interface
Figure 12-2 shows the interface for the application. A starter file containing this interface is provided
with the chapter resources.

Figure 12-2. The Flickr application interface

As you can see, this interface is simple. Feel free to make it look a little better.

417

FLASH CASE STUDY

The interface contains several options across the top: a Search box, a Recent photos button, and an
Interesting photos button. Selecting any of these options creates a request for Flickr.

A successful response from Flickr will display ten images in the TileList control at the top of the screen.
It’s possible for a user to click an item in the TileList control to create some kind of interaction. In our
case, clicking an image will display a large-sized version of the image.

The TileList control provides a grid of columns and rows, usually containing images.
You normally populate this control by setting its property. The contents
for each item in the control are identified by a property in the data provider.

The application includes a NumericStepper component, which will allow the user to scroll through
each page of image results. By default, each request will show the first page of results, but it will be
possible for the user to view subsequent pages by scrolling through the NumericStepper.

Clicking the image in the TileList will display a large-sized version in a UILoader container. The UILoader
component is useful if you want to retrieve content from a remote location to display in a SWF appli-
cation. You can display SWF, JPG, PNG, and GIF files in the control. As we want to display Flickr JPG
files, this control is perfect for our application.

Once a large image displays, its title will appear in a Label control underneath the UILoader. The user
will also be able to click a View at flickr button to jump to the image at the Flickr web site. Later, we’ll
add controls that will display information about photo owners.

For debugging purposes, I’ve included a TextArea control at the bottom right of the interface. We’ll
use this to load the XML document from Flickr, so we can see the outcome of our request. Obviously,
we’ll remove this control before we publish the application on a web site.

Now that you understand the interface, let’s set up the application.

Setting up the application
Follow these steps to set up the application:

1. Open the starter file from the chapter resources. It contains the interface
discussed in the previous section and shown in Figure 12-2.

2. Add a new layer to the Flash file and call it actions. Open frame 1 of the layer in the Actions
panel with the F9 shortcut key, and add the following code:

418

CHAPTER 12

This code sets up the application. We’ll work through it line by line.

The first line creates a variable for the base URL for all Flickr REST web services. It contains
the URL for the web service, as well as the variable. Make sure you replace the text

 with your own Flickr key.

The code also declares a number of variables that we’ll use throughout the application. These
variables are not declared within functions, so they have timeline scope; in other words, their
values are available to all functions.

The variable is the object that we’ll use to make the request. We also
have an object that we’ll use to load the external content. The variable
will contain the returned XML document from Flickr.

The object will store some of the most important properties of each photo.
These properties include the base URL for the image, the owner ID, and the photo ID.

The variable will identify the URL for the operation. Because we’re working
with a REST web service, all arguments for the web service operation will be passed by generat-
ing an appropriate URL.

Finally, the variable will keep track of which page of results the application
has loaded. We’ll need to do this to provide paging functionality for the user.

The code starts by calling the function. After calling this function, the code includes
a action. The code block also includes the signature for the function which
we’ll populate in the next step.

3. Let’s create the function now. The purpose of this function is to set up the applica-
tion before the user starts.

Initially, the function will set up the object and its event listener. When
the object finishes loading the external content, it will call the
function. The function will display the loaded XML content in the

. It will also load the TileList control with the requested thumbnails
from Flickr.

Add the following function to the bottom of the actions layer:

Add the function signature for the function as well. We’ll fill in the details
of this function a little later on.

With the setup complete, we’re ready to begin adding functionality.

419

FLASH CASE STUDY

Getting the recent photos list
We’ll start by requesting the recent photos list.

1. Our first step in retrieving recently uploaded photos is to respond when the user clicks the
Recent photos button. We need to add an event listener to the function, as shown
in bold in the following code block:

When the user clicks the Recent photos button, the application calls the
function.

2. Add the handler function that follows:

This function creates the URL for the REST request and stores it in the
variable. The URL starts with the base URL that we defined at the top of the actions layer.

The function then adds the variable with the relevant operation as its value. In this case,
that operation is . The URL also indicates that we’re requesting ten
photos per page with .

The variable doesn’t contain the finished variable for the REST request.
We’ll also add the page number to request, as well as a timestamp to prevent caching. We’ll
add those values in the function a little later.

The function finishes by calling the function. This func-
tion will finish creating the URL for the web service request. It receives one argument, which is
the number of the page to display. In this case, the function passes a
value of , as we want to see the first page of results.

3. Add the following function. I’ll explain it after the code.

420

CHAPTER 12

As I mentioned, this function receives the page number to request as an argument. This value
will be useful when we’re paging through the results a little later, as we’ll be able to call the
function again, passing a different page number.

The function creates a new variable, which will contain the cur-
rent date and time. Using the current date and time is one way to create a unique random
number. As I mentioned previously, adding a random number to a URL is one way to prevent
caching of the results from Flickr in the web browser.

The function declares a new variable, , which will store the final URL
for the web service request. It also sets the value of the variable to the
passed-in page number. Because this variable has timeline scope, the value is set for all func-
tions in the application.

The function creates the request URL from the variable created in the
 function. It adds the variable as well as the variable, which

contains the random number.

When completed, the variable will look something like the following. You can trace
the value if you want to see it for yourself.

The value will be replaced by your own key. The variable will contain a differ-
ent date and time value, depending on when you create this application.

The function finishes by creating a new object from the variable.
It passes this object to the method of the object. It’s the last line of the
function that actually makes the request to Flickr.

4. We’ll need to finish creating the function referred to in the
function so we can process the results from Flickr. Remember that this function is called when
the object dispatches the event after a successful request.

Initially, we’ll use the function to display the returned XML content from Flickr in the TextArea
control. This step is a useful tool to see the structure of the XML document returned, but you
wouldn’t do it in a production environment.

Modify the function as shown in bold here:

The first new line assigns the property of the object to the object.
We’ve used to identify the and cast the value returned as an
object. The function then displays a representation of the contents
in the TextArea control using the method.

5. Test the application and click the Recent photos button. Figure 12-3 shows what you should
see. Notice the returned XML document in the TextArea control. If you can see this document,
your application is working correctly.

421

FLASH CASE STUDY

Figure 12-3. The application after clicking the Recent photos button

The application makes the request for recent photos at Flickr. It receives an XML document
in response, which is visible in the TextArea control. The response is the standard photo XML
document that you saw earlier in the chapter.

Figure 12-3 shows that the attribute of the root element has a value of . This
indicates that we have a successful response from Flickr.

6. We’ll populate the TileList control with thumbnails derived from each of the elements
in the returned XML document. You’ll recall from the discussion in the “Finding the URL of a
photo” section earlier in the chapter that we must create this URL dynamically from attributes
in the element.

We’ll create a object containing the details of each photo. This object will pro-
vide the source for the images in the TileList control.

Because we’re working with the class, you’ll need to add the following
statement to the top of the actions layer:

7. We’ll need to loop through each element in the returned XML document so we can
build its URL dynamically in order to display the image in the TileList control.

Once we’ve identified the photo’s URL, we can set this value as the property in the
 for the TileList. This process will display the image as an item in the TileList. You

could also add a property to display a text caption for each image, but we’re not going
to do that in this application.

422

CHAPTER 12

Modify the function as shown in the following code block. As there are a
number of changes, you might want to enter all of the code inside the function again.

The function starts by declaring a new object called ,
which we’ll use to populate the TileList. Each item in the will be an object con-
taining a number of relevant properties. In addition to the property, we’ll store other
information about each image, such as the URL for the large-sized image, the owner, and the
photo’s ID.

Using an object simplifies the process of accessing image information compared with con-
structing E4X expressions later on. It will be easier for us to view more information about each
image when it is clicked in the TileList.

The function also declares a variable called for the base URL for
each image. We’ll use this variable to store the dynamic URL for the image. We won’t include
the image extension in the variable so we can use it to construct the URL for both small
and large-sized images. Remember that it’s possible to specify the image size by adding a suffix
before the file extension.

After assigning the property of the to the object, the function
tests the attribute of the root element. This attribute indicates if we have made a success-
ful request by comparing the value to .

If the request was successful, the code works through each element using a
loop. Notice that the code specifies the to loop through by using the E4X expression

. This expression identifies each of the individual elements
within the element.

423

FLASH CASE STUDY

The next few lines generate the base URL for the image. Revisit the “Finding the URL of a
photo” section earlier in this chapter if you’re not sure how I created the photo URL.

After creating the base URL in the variable, the function uses the method
of the object to add an object for each photo. This object assigns the URL of a
small image, found by adding the suffix to the URL, to the property. This small
image will display in the TileList control.

The object also contains a property, obtained by adding the suffix to the base
image URL. The object contains a , , and property for each photo. These
properties will come in handy when we want to display more information about a selected
photo, including the large image.

Once the object is created, the function sets it as the property for the
TileList. The function also adds some to the TileList to add margins. It finishes
by displaying a representation of the XML object in the control using

.

If the request is not successful, the function displays the error message from Flickr in the
 control. The E4X expression uses the attribute of the returned

element.

8. Test the application now. Click the Recent photos button, and you should see the TileList popu-
late with recent photos, as shown in Figure 12-4. The TileList should display ten images.

Figure 12-4. Populating the TileList with recent photos

Displaying a large image and title
The next step in building the application is to display a large image and title when the user clicks a
thumbnail image.

1. In order to display a full-sized image in the UILoader control, we need to add an event listener
that responds when the user clicks an image in the TileList. This event listener will also need to
display the title below the large image.

Because we’ll be tracking a , we need to add the following statement to the
top of the actions layer:

2. We’ll assign the event listener for the TileList event with the following line, which
you should add to the function:

When a user clicks an image in the TileList, the function will be called.

424

CHAPTER 12

3. Now you can add the function shown here:

This function assigns the clicked item from the TileList data provider to the
object. It does so by using the method with the number of the photograph
clicked, found with the expression .

The function can then use the properties of the object to identify the title and
URL for the large-sized image. The second line assigns the property to the property
of the label. The third line of the function assigns the property of the

 object to the of the UILoader control. This line will display
the large image in the interface.

Before continuing, let’s clear the current text displaying in the label so users don’t see the word
Label before a large photo displays. In the Parameters panel, remove the Label value from the
text field.

4. Test the application, click the Recent photos button, and then click an image in the TileList.
Figure 12-5 shows how the interface should appear when you click an image from the
TileList. You can see the large-sized version of the clicked image below the thumbnails. You can
also see a title below the image.

Figure 12-5. Displaying the large image and details

425

FLASH CASE STUDY

5. We want the user to be able to view this image at Flickr by clicking the View at flickr button. To
accomplish this, add the following event listener line to the function:

This line responds when the user clicks the View at flickr button by calling the
 function.

6. Add the following function to the actions layer:

This function creates the URL for the page displaying this photo at Flickr. The function starts by
declaring a variable for this URL called . It creates the URL from the and
attributes of the element. We stored this information in the object. If
you’re not sure how to create the URL, see the “Finding the page containing the photo” section
earlier in this chapter.

7. Test the application and click the View at flickr button. You should see the image at the Flickr web
site, as shown in Figure 12-6. Viewing the photo at Flickr allows a user to view comments on the
image, see more information about the image, and find out about the owner of the image.

Figure 12-6. Viewing the image at Flickr

426

CHAPTER 12

Adding paging functionality
The next task is to allow the user to move from one page of results to another.

1. The application will control paging by using the NumericStepper control. The application will
also need to cap the number of pages that the user can view by using the attribute from
the element. If we don’t do this, users will get an error if they try to go to a page
higher than the last page available from Flickr.

At the moment, the NumericStepper has its default maximum value of . We’ll need to change
this to be the total number of pages available from Flickr.

Add a new variable called with the other variable declarations at the top of the
actions layer. The new line appears in bold.

2. Populate this variable by making the following changes to the function.
Again, the new lines appear in bold; the complete function isn’t shown in the following code
block:

The first new line determines the total number of pages available by using the E4X expression
. The second new line sets this value as the property of

the NumericStepper. The third new line sets the minimum value in the NumericStepper to .

3. Now we need to respond when the user clicks the NumericStepper to change the page num-
ber. Add an event listener to the NumericStepper that will respond when the selected value
changes. The user can either use the up and down buttons or type a new value in the control.

Add the following line to the function:

This line ensures that the application calls the function when the
value in the NumericStepper changes.

4. Add the function to the actions layer.

427

FLASH CASE STUDY

This function is very simple. It checks that the selected value in the NumericStepper is not
equal to the variable. If this is the case, the function calls the
function, passing the value selected in the NumericStepper as the new page number.

5. Test the application again. Figure 12-7 shows how to use the NumericStepper control to select
different pages in the application. As you choose a different value, you should see the thumb-
nails refresh in the TileList control. Once you’ve changed the selected page, you should be able
to click any of the new images to see their details below.

Figure 12-7. Choosing different pages with the NumericStepper control

Making cosmetic changes to the interface
Before moving on, we need to make some cosmetic changes to clean up the interface a little.

1. The application should hide the View at flickr button until an image is selected from the TileList.
It should also disable the NumericStepper until the user has made a request for Flickr images,
and reset its value to with each new request.

Add the following two lines to the function. I’ve added them at the bottom of the
function, but it really doesn’t matter where they are placed.

These lines disable the NumericStepper control and hide the control when the appli-
cation first loads. If you test the application, you won’t see the View at flickr button at first, and
the NumericStepper won’t be enabled. These pieces of functionality don’t make sense unless
the interface displays images.

2. We’ll enable the NumericStepper once we’ve made a successful request for images. Add the
following bold line to the function. I’ve included the existing line that you
should add the new line above.

The line sets the property of the NumericStepper to .

3. We want to display the View at flickr button once a photo has been clicked in the TileList. When
the user sees the large-sized image, this button will also appear.

Add the following line to the function:

428

CHAPTER 12

4. Finally, we’ll reset the NumericStepper when we make a new request. This will make sure that
the control displays the correct page number. In our case, this number will be 1, representing
the first page of results.

Add the following line to the function:

The line sets the value in the NumericStepper back to .

5. Test the application and click the Recent photos button. The View at flickr button should become
visible only after you click a photo in the TileList. The NumericStepper should be enabled only
after you’ve requested the recent photos.

Viewing interesting photos
The next stage in building this application is to enable the Interesting photos button. We’ve actually
done most of the work already, so we’ll need to make only minor changes to add this functionality.

1. To enable the Interesting photos button, all we need to do is to add an event listener and han-
dler function. Add the following line to the function:

We’ll call the function when the user clicks the Interesting photos
button.

2. Add the function now.

This function is very similar to the function. The only difference is
that it calls a different method—in this case, . It calls the

 function to request the interesting photos from Flickr. The function also resets
the NumericStepper back to because we’re starting with the first page.

3. Test the application again. You should be able to click the Interesting photos button to display
interesting photos in the TileList control. You should be able to click one of the photos to see
a large-sized version, as well as the title. Figure 12-8 shows how the application might appear
when you’ve done so.

429

FLASH CASE STUDY

Figure 12-8. Viewing interesting photos at Flickr

Searching Flickr
The application also needs to search Flickr when the user enters a keyword and clicks the Go!
button.

1. In order to carry out a search of Flickr, the application will need to call the
 operation. It will need to send the user’s search term with the request.

We’ll add an event listener that responds when the user clicks the Go! button. Add the follow-
ing line to the function to indicate that the function should
be called in this case.

2. Now add the function to the actions layer.

430

CHAPTER 12

This function creates a URL that calls the operation, providing the
search text as one of the variables. As with the other examples, we’re retrieving ten photos at
a time.

The function then calls the function, passing a value of so that the first page
displays. It finishes by resetting the value in the NumericStepper to .

3. Test the application again. You should be able to enter a search term and see the relevant
photos. Figure 12-9 shows an example of searching for the term flower. You can see that I’ve
clicked one of the images to display a large-sized photo.

Figure 12-9. Using the search functionality in the application

Showing owner information
Let’s finish the application by showing details of each owner.

1. The application should display the details about each photo owner, including the username,
real name, and location. It should also provide a link to view the owner’s Flickr profile.

We’ll need to modify the interface slightly. Add four new Label controls to the right of the
UILoader. Give them the instance names , , , and

, respectively. Figure 12-10 shows how I’ve arranged the new controls.

431

FLASH CASE STUDY

Figure 12-10. The new Label controls in the interface

After you’re happy with the position of the controls, remove the Label value from the text field
of each Label in the Parameters panel. This ensures that text Label won’t be visible before we
load a large-sized image.

2. Modify the function to call a new function, , as listed
in bold here:

The new line calls the function, passing the owner details from the
 object. This value is a indicating the owner ID at Flickr.

3. Add the function that follows:

This function requests the owner details from Flickr. It starts by declaring a and
 object. It also creates a new variable that we’ll use to avoid caching of

results in the web browser. The final variable is the that we’ll pass to the .

The variable contains the base Flickr URL that we created at the top of the
actions layer. It adds the name of the method to call—in this case, .
It also passes the argument with the request. As with the other URLs, this
includes a variable at the end.

432

CHAPTER 12

The function adds an event listener that will respond when the application receives a response.
When Flickr replies, the application will call the function.

The function creates a new from the variable
and calls the method of the object.

4. Add the following function:

This function processes the response from Flickr and populates an object with the results
provided. Note that it casts the property of the as an object so we can
apply E4X expressions.

The function checks the attribute to make sure that it has a value of . If so, the function
populates the Label controls that we added earlier with the relevant elements from the loaded
owner XML content. The application uses E4X expressions to target these elements within the

 element.

The function populates the control a little differently from the approach used in the
other controls. In this case, the application creates a clickable Label control by assigning
the element to the property of the Label. This element contains the
full URL to the owner’s Flickr profile.

The function uses the value to create a hyperlink. It also uses HTML
3.2 tags to provide underlining and a blue color.

If the request is not successful, the relevant error message appears in the
control.

5. To test the new functionality, run the application and find some Flickr photos. You can search
for a keyword, view the recent photos, or see interesting photos. When the TileList populates,
click one of the images. You should see the user details appear to the right of the image, as
shown in Figure 12-11. When you click the View flickr profile link, you should see the owner’s
Flickr profile page in a web browser, as shown in Figure 12-12.

433

FLASH CASE STUDY

Figure 12-11. Viewing the photo owner details

Figure 12-12. The owner’s Flickr profile page

434

CHAPTER 12

Well, that’s it for the sample application. Congratulations on getting this far. I hope you found building
this application a useful exercise, and I hope it gave you some tips for working with XML documents.

I’ve included the code for the application in case you want to check it against your own code.

435

FLASH CASE STUDY

436

CHAPTER 12

You can find the completed Flash file saved as with the chapter resources. Note
that this version doesn’t include an API key, so you’ll need to edit the variable at the top
of the actions layer to include your own. Replace with your own API key in the Flash file
in order to make the example work correctly.

Summary
In this example, I showed you how to build a simple SWF application in Flash that queries Flickr in
various ways. You saw how to view recent and interesting photos, as well as how to add Flickr search
functionality.

Note that Adobe has created a Flickr ActionScript 3.0 library that provides access to all the func-
tionality available through the Flickr API. You can find this library at

 if you want to explore it further.

In the final chapter of this book, I’ll work through a Flex XML application. This application will work
with Adobe Kuler to query it and display color swatches.

439

Chapter 13

Welcome to the last chapter of this book. In this chapter, we’ll build a SWF applica-
tion using Flex Builder. This application will work with Adobe Kuler. Kuler is built into
Flash CS4, but it isn’t as easily accessed by Flex Builder.

The application will display color themes taken from the Kuler web site. It will request
the highest rated and most popular themes. It will also enable users to search the
themes for a specific keyword.

In this example, our application will display the five color swatches associated with
each theme. We’ll need to build a custom component so we can add the swatches
to a DataGrid. We’ll also create a custom class to handle the loading and parsing of
the Kuler feed. As a bonus, you’ll learn how to work with XML documents and E4X
expressions that include namespaces.

As usual, all of the resources for this chapter are available for download at
.

Before working through the example, you should have an idea of how Kuler works
and the ways in which developers can access Kuler content.

Understanding Adobe Kuler
The Adobe Kuler web site allows users to share color themes. Visitors to the site can
browse or search for existing color themes, as well as upload their own to share with
other users. The Adobe Kuler site is at , as
shown in Figure 13-1.

FLEX CASE STUDY

440

CHAPTER 13

Figure 13-1. The Adobe Kuler home page

Adobe has made the Kuler content available to developers as a series of RSS 2.0 feeds. This functional-
ity allows developers to display Kuler content in their own web applications. The Kuler feeds provide
information about the highest rated, most popular, newest, and random color themes. Users can also
search among the themes in various ways.

RSS is a standard XML vocabulary used to provide web site content for syndication. There are different
versions of the specification. You can find out more about the version 2 specification at

on.

Developers can request a specific feed by starting with a base URL and adding name/value variable
pairs that indicate what they want to view. You’ll see how to change the URL of the feed shortly.
The developer web site and supporting documentation is at

.

The following rules apply to Adobe Kuler feeds:

They are available only for noncommercial uses. Commercial users need to contact Adobe to
make other arrangements.

Developers need an API key to consume each feed. The key is available only to developers with
an existing Adobe ID.

Developers must display the Kuler API logo in any application that they develop.

440

441

FLEX CASE STUDY

Applying for a Kuler key
Before building the application in this chapter, you’ll need to apply for an Adobe Kuler API key. You
can do this at . You’ll need to sign in with your Adobe ID first and fill
in a form. The API key will be e-mailed to you, and you’ll need to verify it by clicking the link in the
e-mail message.

Once you have a Kuler API key, you’re ready to start consuming the RSS feeds.

Understanding the Kuler feeds
Information about all of the Kuler feeds is available through the API web site at

m/. Click the B. Feeds link on the left side of the page to learn more about each feed. You
can request a predetermined feed, such as a list of highest rated themes, or provide search criteria to
retrieve a set of custom results in the feed.

In this chapter, we’ll focus on the highest rated and most popular existing feeds, and allow the user to
search all Kuler themes by keyword.

Accessing an existing feed
The URL for all feeds starts with m/. To return a list of items in either the
highest rated or most popular feed, you need to add the following parameters to the base URL:

The order of the parameters in the URL doesn’t matter. Table 13-1 explains these parameters.

Table 13-1. Parameters to pass when requesting a Kuler feed

Parameter
name

Required/
optional

Description Default
value

Optional Determines the type of list to request.
Choose from , , ,
or .

Optional Determines the first item to
display, starting from .

Optional Determines the maximum number of
items to display on each page. Choose
values from to .

Optional Determines the number of days from
which to retrieve values. A value of
retrieves all themes without a time limit.

Required Provides the developer API key obtained
for the request.

441

442

CHAPTER 13

The following examples show how you can use these parameters to request feeds:

 Return the most recent feeds, starting from the tenth record:

Find the most popular feeds for the previous seven days:

 Retrieve the highest rated items, ten per page:

In all of the examples, you would need to replace the text with the developer key provided
by Adobe.

In our application, we’ll pass the , , , and parameters. Because
we won’t include a , no time limit will be imposed on the results.

Searching Kuler
You can search the Kuler themes by using the following URL:

Table 13-2 shows the meaning of each of the parameters.

Table 13-2. Search parameters for Kuler themes

Parameter
name

Required/
optional

Description Default
value

Optional Determines the search criteria. Either a
value or one of the predetermined items
listed in Table 13-3. A search looks for
the search term in theme titles, tags, author
names, theme IDs, author IDs, and hex values.

Optional Determines the first item to display, starting
from , which is the first list item.

Optional Determines the maximum number of items
to display on each page. Choose values from
 to .

Required Provides the developer API key obtained for
the request.

443

FLEX CASE STUDY

As you can see, most of the parameters are the same as in the previous request types. However, the
 parameter requires a little more explanation.

The easiest way to use the parameter is by including a keyword or phrase as the value,
and that’s what we’ll do in our application. You can also add a filter to search in particular areas. These
are explained in Table 13-3.

Table 13-3. Predefined Kuler search items

Filter Description

Searches on the provided theme ID

Searches on the provided user ID

Searches on the provided e-mail address

Searches on the provided tag

Searches on the provided hex color value, in the format or

Searches on the provided theme title

You can apply any of these filters by preceding your search term with the relevant word. For example,
to search theme tags for the word sand, you would use the following name/value pair in the URL:

The following examples show how to search Kuler themes:

Search using the word orange and returning 100 items per page:

Search for all themes tagged with the word sand, starting from the tenth record:

Again, you would replace with the developer key provided by Adobe.

It’s possible to retrieve other information from Kuler, such as a thumbnail of a theme
or comments about a theme. However, for the purposes of this application, we won’t
cover these areas. Feel free to research them yourself if you would like to include them
in your application.

Once you’ve made a successful request for a Kuler RSS 2.0 feed, you’ll need to deal with the
response.

444

CHAPTER 13

Receiving a Kuler response
All Kuler responses conform to the RSS 2.0 XML vocabulary. As I mentioned earlier, you can find
details about this vocabulary at on. Each feed contains
additional items outside the specification, from the Kuler namespace

. These items are prefixed with the name .

A sample Kuler RSS feed for the highest rated items follows. I’ve included only a single
element, but, in reality, you would see one element for each theme returned.

445

FLEX CASE STUDY

446

CHAPTER 13

You’ll notice that there are several namespaces in the root element. As I mentioned, we’re par-
ticularly interested in the namespace. We’ll need to declare this namespace in ActionScript 3.0
before we can access any of the elements prefixed with .

Information about the returned results appears in the element. It’s possible to access the
name of the feed in the element, as well as a description of the feed in the
element. The element shows which themes are included in the responses, as well as
the total number of records available.

Each of the themes appears in an element. Each item has a theme title and link. It also includes
a element. This element contains the information that we’ll need to access about
each theme.

Each element has a child element. Within this child ele-
ment are five elements—one for each color in the theme. You can access the hexa-
decimal color for each of these elements using the child element. We’ll
need this element in order to display the correct color swatch in our application.

Navigating the returned XML document will be a little more difficult than in the Flash application
created in the previous chapter. In this Flex application, we’ll need to take into account the
namespace whenever we work with E4X expressions. Our expressions will appear to be more compli-
cated than the ones you’ve seen so far in this book.

Well, that’s enough background information about Kuler for us to get started with the application.
Let’s create the Flex application.

Building the application
To recap, we’ll build a Flex application that will allow users to access color themes from Kuler. We’ll
allow the user to choose which type of themes to display, and then list the returned themes in groups
of ten in a DataGrid component. We’ll use a custom ItemRenderer component to display the color
swatches associated with each theme in the DataGrid.

447

FLEX CASE STUDY

The users will be able to do the following with the Kuler API:

Search Kuler themes by entering a keyword

View the highest rated themes

View the most popular themes

They will be able to see each of the results in groups of ten themes, and page through the remaining
results using a NumericStepper control.

We’ll display the returned XML document in a TextArea control. However, you wouldn’t normally
display this information in a real-world application. It’s for debugging purposes only.

We’ll start with the application interface.

Working through the interface
Figure 13-2 shows the interface for the application. A starter file containing this interface is provided
with the chapter resources. We’ll work through that file soon.

Figure 13-2. The interface for the Kuler application

448

CHAPTER 13

As with the previous case study, this interface is very simple. Feel free to make any changes you wish,
but remember that you must display the Kuler logo to conform to Adobe’s requirements.

The interface provides several options for accessing Kuler feeds. The users can enter a search term and
click Go! to retrieve results. They can also select the highest rated or most popular themes by clicking
the corresponding buttons. All of these options generate a URL that requests a Kuler RSS feed.

When the Kuler service responds, the RSS feed XML document will display in the TextArea control at
the bottom of the application. The DataGrid will populate with the title of the swatch, thumbnails of
the five colors, and the theme rating.

The RSS feed provides an image that you can use to display thumbnails of the theme. However, this
image is quite small. For our application, we’ll show larger-sized thumbnails in the DataGrid. We’ll do
this by using a custom ItemRenderer within the Colors column of the DataGrid. This column will also
display the hexadecimal value for the color.

A NumericStepper control will allow the user to scroll through each page of theme results. When a
request is initially made, the first page of results will display. Clicking the NumericStepper will allow
the user to view the themes on subsequent pages.

Let’s set up this application in Flex Builder.

Setting up the application
In our application, we’ll work with the following three files:

The main application file containing the interface

A custom class file that handles the loading and parsing of the Kuler RSS feed

A custom component that will be used as the ItemRenderer for the DataGrid component

The process for setting up the application follows:

1. Start by creating a new Flex project with the name of your choosing. Add the starter file
 from the chapter resources to this project. You can copy the entire MXML

file from its location and paste it into the Flex Navigator view.

2. Create a new folder called in the project and copy the file there.
This file is the Kuler logo that we must display in our application.

3. The starter file creates the interface. It contains the following code:

449

FLEX CASE STUDY

You’ll notice that in addition to the controls described in the previous section, the application
includes a hidden Label control with the of , which we’ll use to display messages
to the user. There is another control named , which we’ll use to display a
message when a feed is requested.

The final Label control, called , will show information to the user about the
type of results that are currently displayed. This will be either the name of a preset feed or
the custom search criteria that the user has entered.

Feel free to modify the width settings for the DataGrid and
TextArea for the application. You can also choose a different Kuler
logo by visiting

.

Creating the custom class file
We’ll create a custom class file that will manage the request for the loading and parsing of the
Kuler feed.

1. Create the class file by choosing File New ActionScript Class. Add the class to the
 package and name it .

Flex Builder will create the class file in a new folder. The class file should contain
the following content. Don’t worry if the brackets are spaced a little differently than in my
example.

450

CHAPTER 13

2. The first task here is to make the class bindable. Add the following declaration above the class
declaration:

This declaration will allow us to use any of the public methods in binding expressions within
our application file.

3. We’ll also need to declare some variables and constants for use in the class file. Add the follow-
ing declarations immediately below the class declaration:

We’ll use these variables in the class file. The object will store the loaded XML
document from Kuler. We’ll use the object to request the RSS feed.

The object will store all of the elements from the XML docu-
ment. We’ll use the object to store an array of objects containing
the relevant properties of each of the themes. Because of the hierarchical nature of the RSS
feed, it will be much easier if we use E4X expressions to extract the information we need and
store it in a flat structure within an made up of objects.

Because the RSS feed includes the Kuler namespace
, we’ll need to declare a object so that we can construct E4X expressions

correctly. I’ve called this namespace .

The final two declarations are the constants that we’ll use in the class file. The first constant is
, which will provide the key value for each request. Replace the text

with your Kuler developer key from Adobe.

The second constant is the base URL for all Kuler feeds. You’ll remember from earlier in the chap-
ter that all feeds start with the URL om. We’ve added to the end
of the URL, as all of the feeds we’ll request in this application include as part of their path.

4. After adding these private variables, check that Flex Builder has added the following
statements at the top of the file:

You should add any statements that are missing.

451

FLEX CASE STUDY

5. We’ll turn our attention now to the constructor method . This method will
instantiate a object by creating a object and adding event listeners
that respond to the , , , and events.

Modify the constructor method as shown in bold here:

You can see the naming convention that I’ve used to name each of the handler functions.

6. After adding the code, check that Flex Builder has added the following statements.
If they don’t appear in your class file, you’ll need to add them yourself.

7. We’ll also need to add the method that follows:

This method is private because it does not need to be accessed from the application file.
The method starts by assigning the loaded Kuler XML document to the object.
It finds the document using and casts the returned as an object of
type .

The method also dispatches a event to the Flex application file. It does this with the
 method. The main application file will include an event handler to respond

when the object dispatches this event.

8. Add the following handlers for the other events that we identified:

452

CHAPTER 13

These handlers all dispatch an event of the same type that they received to the application file.
For example, the method receives an as an argument
and dispatches an to the application.

In each of the methods, we’ve passed the appropriate arguments when dispatching the event.
You can see these arguments and their default values as tool tips as you start entering the con-
structor method.

When creating the new events, we’ve mostly passed the default values for each of the
arguments. But, in some cases, we’ve passed a value from the originating event. This allows
us to pass along an error message or value from the initial event. For example, the

 method passes the value from the original event when it dis-
patches the new to the application file. We identified the original value by
using as the argument when we created the new .

9. The custom class file needs a public method that will request the Kuler RSS feed. We’ll call this
method . The role of this method is to prepare the URL to request and call
the method of the class to load the feed. The loaded feed will then be
handled by the method.

Before we create the method, we’ll declare a new event called the
event. This event will have an type but will use a custom name. We’ll dispatch the

 event if the method of the class fails.

Add the following event declaration above the class declaration:

We’ve declared an event with the name of the type .
We’ll dispatch the event if the method fails inside the new
method.

10. Add the new method now, as shown in the following code:

The function handles the loading of the external feed. It receives two argu-
ments: , which provides details of the URL to request, and , which indi-
cates the starting point for the request.

Remember that all URLs have the same base, but differ in the additional arguments that
they require. The variable contains these arguments. The “Understanding the Kuler
feeds” section earlier in this chapter provides information about all of the arguments that you
can use.

453

FLEX CASE STUDY

The function starts by declaring a variable called , which will store
the complete URL for the feed. The full URL begins with the constant and
adds the additional URL details, , passed with the function call. The variable
also includes the name/value pair, which will take its value from the
argument.

In addition to the passed-in arguments, the variable adds a name/value pair for the
Kuler API key. This variable is called , and it uses the value stored in the constant.

The URL finishes with the variable. This variable has a fixed value of , meaning
that the application will display ten records at a time. You could also pass this value as an argu-
ment to the function, but I’ve chosen not to do that here. This enhancement might be one you
add yourself later.

After creating the URL, the call to the method of the object appears in
a block. If there is an error when calling this method, the object
dispatches a event—the event we declared earlier. We’ll add a listener for this event
in the application file a little later, when we add the other event listeners.

11. We also need another public method in the class file that returns the loaded XML document.
We’ll use this method to display a representation of the XML document in the TextArea
component of the application.

Add the following public method to the class file:

This method returns the object. Remember that we load the XML docu-
ment into this object in the method.

Getting the highest rated themes
The next task in creating the application is to request a Kuler feed. We’ll start with the highest rated
Kuler themes.

1. Open the starter file in your project. You should have copied this resource
file to your project earlier. We’ll start by configuring the Highest rated button.

2. We’ll need to set up the application. We’ll do so by calling a function in the
attribute of the tag.

Start by adding this attribute to the opening element, as shown in
bold here:

When the interface finishes creating, the application will call the function, passing
a object. In the next step, we’ll create this function and add the code we need to
make the application work.

454

CHAPTER 13

3. Add an block containing the following code:

This block imports the custom class that we just created. It also
declares a new object called .

The function follows. In this function, we create the object using the
constructor method. We also add several event listeners that respond to the various events
dispatched by the custom class. The code block also includes empty handler functions, which
we’ll complete a little later.

4. After you’ve entered this code, check that Flex Builder has added the following state-
ment at the top of the code block:

If the statement doesn’t appear, you will need to add it with the others at the top of the
code block.

5. Let’s add some code to the handler functions so we can display errors in the case of loading
problems. We’ll display the error messages in the control, so modify the handler
functions as shown here in bold:

455

FLEX CASE STUDY

The first three error handler functions display a message with a property from the event object.
You’ll remember that we dispatched these properties when we called the
method to create the events in the custom class.

In the case of the object, we display the code from the server. This is
a value of data type that indicates how the server responded to the request. For example,
the value might be a status, meaning that the file wasn’t found. A successful request will
have a status of . A little later, we’ll remove the message for successful requests.

The and handler functions both display the property associated
with the event object. The function displays the static text There was an error
loading the Kuler feed. Remember that the event is dispatched if the call to the

 method of the fails in the block of the custom class.

6. Now we need to configure the function. Initially, we’ll just display the
returned XML document in the TextArea control so you can see what is returned by the Kuler
web site.

Modify the function as shown in bold here:

When the object receives the XML document response from the Kuler web site,
it will call the method to return the XML document. It displays this document in the
TextArea with the method.

7. Before we can test the application, we need to configure the Highest rated button. We’ll add a
handler when a user clicks this button to request the highest rated themes.

Add the following event listener to the function:

8. When the user clicks the Highest rated button, it calls the function. Add this
function to the block now:

456

CHAPTER 13

The function calls the function, passing the correct name/
value pair to add to the base URL for the Kuler feeds. Remember that the starting URL for
all Kuler feeds is the same, and that we request each feed by manipulating the final URL and
including query string variables.

We’ll call the function with every different type of request that we make to the
Kuler web site because the only change will be to the URL. We’ll also pass a string value that
will tell the users what type of result they are viewing. In this example, it’s the text – highest
rating. We’ll eventually display the text in the TextBox control.

9. We’ll also need to add the function to the block. However, before
we do so, we’ll declare a variable that stores the feed URL. This step will allow us to keep track
of the last requested feed. When we add the paging functionality a little later, we’ll be able to
repeat the request for the last feed using this variable.

Add the following variable below the declaration of the object:

10, The next step is to add the function. Add the following function to the
block:

This function receives the feed URL as an argument, along with the text describing the
request, stored in the argument. The function then calls the
function, which we’ll add shortly, passing the argument. It finishes by displaying the

 value in the control.

11. Now we need to add the function that follows:

The function will be called with every different type of feed request. The function
receives a variable, which provides the last part of the feed URL. The custom class file
will add this value to the end of the base URL for all feeds.

The function displays the text Loading Kuler feed in the control. It assigns the
passed-in feed variable to the variable we added earlier. Finally, the function calls the

 method, passing the variable and a value of to indicate that we’re
requesting the first record from the feed.

457

FLEX CASE STUDY

12. We’re ready to test the application. With the functionality we have added so far, we should
be able to request the first ten records from the highest rated feed. When the application
receives the XML document from the Kuler web site, it will display a representation in
the TextArea control.

Run the application and click the Highest rated button. Initially, you should see the loading mes-
sage as the application requests the feed. Figure 13-3 shows what should appear after the feed
successfully loads.

Figure 13-3. Loading the first feed

The Label control at the top of the screen indicates that we are working with the highest
rating feeds. The Label control above the DataGrid provides the HTTP status of the request.
It indicates that we have a status of 200, which means that the server successfully provided
the page.

The TextArea control at the bottom of the screen displays the RSS feed provided by Adobe.
If you look at the element, you’ll see that the feed includes records 1 to 10 of
106880.

Scroll through the feed XML document to see its structure. You should see ten
elements.

458

CHAPTER 13

13. It’s a small point, but the user shouldn’t see the HTTP status error message for a successful
request. We’ll modify the function so that it displays error messages
only where the status is not equal to .

Change the function as shown in bold here:

If you test the application again, you will see only the message Loading Kuler feed in the Label
control. We’ll remove that value a little later on.

Displaying the theme
Now that we have access to the RSS feed, it’s time to think about how to display the feed details in the
DataGrid. You can see that the component has three columns: Swatch title, Colors, and Rating. We’ll use
item renderers to display the values from the feed correctly, and you’ll see how this works shortly.

Before we can display the values in the DataGrid, we need to retrieve them from the RSS feed. We’ll
extract the values and add them to an object.

We’ll be able to store a flat structure in the object from the hierarchical structure
of the RSS file. Doing so will allow us to assign the object as the data provider for
the DataGrid.

The is more suitable as a data provider than an , as it supports two-way data
binding. The object also has access to additional methods for manipulating the
object content.

If you examine each of the elements in the feed, you’ll notice that structure is complex. The
following is a simplified version of the structure, which includes only the elements that we want to
access from the feed: title, rating, and colors.

459

FLEX CASE STUDY

Notice that some of the elements include the prefix to indicate that they are part of the
namespace . We declared this value as a object
called at the start of the class file. We’ll need to use this when constructing E4X
expressions to retrieve theme values.

The element is a child of the element, which in turn is a
child of each element. We can retrieve the theme title with a relatively simple E4X expres-
sion. If there were no namespaces involved, we could simply use the expression

. However, because two of the elements are prefixed with the Kuler namespace, we’ll
need to prefix them with to access them correctly. So the resulting E4X expression for the

 element will be .

Accessing the element works in the same way. The E4X expression that we’ll
need is .

To access each of the elements, we’ll need a more complicated E4X expres-
sion. Without namespaces, the expression would be as follows:

Because there are five swatches, we’ll replace the value with a number from to . However,
because all elements except are within the Kuler namespace, we’ll need to use the following
E4X expression:

The expression looks more difficult to understand than it really is. We’ll need to use this expression
five times—once for each of the swatches. Let’s see how this works in the class file.

460

CHAPTER 13

1. Switch to the custom class file and add the following public method,
. I’ll explain it after the code.

This method returns an object populated with the title, rating, and five
swatch colors for each theme. It starts by declaring variables for each of these properties.
It then identifies each of the elements using the E4X expression

. Remember that each theme is inside an element.

The method creates the object. We declared the object at the start of the
class file. It uses a loop to work through each of the elements. Within
the loop, we access the relevant elements using the E4X expressions you’ve just seen.

At the end of the loop, the method uses to add the values to the
 object. Each element in the is an

with the properties , , , , , , and . For the
colors, we’ve added the prefix to the beginning of the supplied number so we can use
the values to display the colors a little later. The method finishes by returning the

 to the application.

461

FLEX CASE STUDY

2. Switch back to the application file. We’ll display the values from each in the feed within
the DataGrid component. Let’s start by displaying the title and rating in the first and third
column of the DataGrid.

Modify the element as shown in bold in the following code block:

The first and third columns use a property as well as an ele-
ment. The item renderer determines how the value will display in the column. In both cases,
the item renderer component is an control. By default, Flex assigns the data from
the data field to the property of this control.

3. Nothing will display in the DataGrid until we assign the swatches as its data provider. Modify
the function to add the following line, shown in bold:

4. The new line calls the function, which we’ll add now.

This function calls the method that we just added to the custom class file. It
assigns the returned object as the property of the DataGrid.
It also clears the text in the control so that the user no longer sees the message
Loading Kuler feed.

462

CHAPTER 13

5. Run the application again and click the Highest rated button. You should see that the DataGrid
populates with the title and rating for each feed, as shown in Figure 13-4.

Figure 13-4. Populating two columns in the DataGrid

6. The middle column in the DataGrid will display the five colors associated with each theme.
In order to show these colors, we’ll need to create a custom component to use as the item
renderer for the column.

Create the new component using File New MXML Component. The new component is
called ColorSwatch and it is based on the VBox component. It has a Width setting of 460 and a
Height setting of 90. Figure 13-5 shows the settings for this component. After you have added
the settings, click Finish to create the component.

Flex Builder should create the following code in the component:

463

FLEX CASE STUDY

Figure 13-5. The settings for the ColorSwatch component

7. The component will contain five controls, which we’ll use to display the swatch
color. We’ll use the hexadecimal value as the property of the controls.
The component will also contain five labels to display the color value below the swatch.

We’ll need to send in the color values from the data provider of the DataGrid. Remember that
we called these properties , , , , and when we created the

 object in the custom class file.

Modify the custom component as shown in the following code block. The new lines appear
in bold.

464

CHAPTER 13

The custom component uses and elements to lay out the
and controls. It assigns the colors to display to the property of
each Canvas control and to the property of the Label controls. We reference these prop-
erties using a curly braces binding expression that starts with the text . For example, to
access , we use the expression .

8. To use the custom component as the item renderer in the DataGrid, we need to modify the
relevant column, as shown here in bold:

The change adds the property to the and sets its value to
the name of the custom control .

9. Run the application and click the Highest rated button. This time, you should see the second
column populated with color swatches, as shown in Figure 13-6.

Each of the colors displays as the background for the Canvas controls in the custom compo-
nent. The color value also displays below each Canvas in a Label control.

465

FLEX CASE STUDY

Figure 13-6. Displaying the color swatches in the interface

Adding paging functionality
At the moment, we can see only the first ten items when we view the highest rated themes. We’ll need
to make several changes in order to allow the user to page through the other results.

1. The first task is to modify the custom class so we can determine how many pages there are
in total for the current request. Switch to the file and add the following

 public method:

The method determines the total number of records from the
element that we find with the E4X expression . It then
divides this value by ten and rounds up to determine the total number of pages. Remember
that we’re displaying ten items at a time. The method finishes by returning the calculated num-
ber of pages.

466

CHAPTER 13

2. Switch back to the application file and modify the file as shown here
in bold:

The first change to this function is that it adds a new variable called , which stores the
number of pages returned by the public method we just created. The change also
adds an block to the function.

If the number of pages to display equals —in other words, no records were returned—the
application will display the message There are no matching Kuler themes. It will also disable
the NumericStepper control, as there are no additional pages to display.

When more than 0 pages are returned, the application will clear the loading message from
the control. It will enable the NumericStepper so that the user can use it to page
through the results. The function also sets the and values of this control.

3. We’ll also need to make some changes to the function, which is called when a
feed is first requested. At this point, the NumericStepper should display a value of 1. We need
to do this in case the user has changed the value to a higher number when viewing an earlier
feed. The function also disables the NumericStepper while the new feed loads.

Modify the function as shown in bold in the following code block:

4. We also need to modify the function to pass the requested page number to the
 method of the object. At the moment, it’s passing a value of .

Modify the function as shown here in bold:

467

FLEX CASE STUDY

The first change is the calculation of a variable. The results in a Kuler feed are
numbered from 0 onward. The first result in a group of pages will be one less than the value in
the NumericStepper multiplied by ten.

For example, if the NumericStepper displays a value of 2, the first record we’ll need to access
is record 10. We find this by number taking one from the NumericStepper value to give us one
and multiplying this by ten to give us the starting index of .

We also need to modify the call to the method to pass the new
variable.

Finally, the application should clear the DataGrid while the new feed is requested. We do this
by assigning the property to an empty array using the expression .

5. The final change to introduce paging to the application is to add a listener to the NumericStepper
control. This listener will respond when the user changes the page value.

Add the following line to the function:

When the user changes the value in the NumericStepper, the application will call the
 function.

6. Check that Flex Builder has added the following statement:

If not, add the line yourself.

7. We also need to add the following function to respond when the value in
the NumericStepper changes:

This function starts by clearing the DataGrid prior to making another request. It does this using
the same method that you saw earlier.

The function also disables the NumericStepper while the request is in progress. The last line
of the function calls the function again, passing the variable. Remember
that this variable will store the last requested feed type, so we’ll repeat the same request.

As you saw earlier, the function will calculate the starting point for the results from
the value in the NumericStepper control.

468

CHAPTER 13

8. Run the application and click the Highest rated button. The NumericStepper should be enabled
after the application receives the feed. Choosing a different page should clear the DataGrid
and disable the NumericStepper while the new feed loads. When the selected page displays,
the NumericStepper should be enabled again.

Figure 13-7 shows the application displaying page 4 of the highest rated feeds.

Figure 13-7. Using the NumericStepper to page through the results

We’ve almost finished the application. The next step is to show the most popular themes.

Displaying the most popular schemes
We can display the most popular schemes for the past 30 days with only minor changes to the
application.

469

FLEX CASE STUDY

1. First, we need to add the following event listener to the function in the main
application file:

2. We also need to add the function that follows:

This handler function passes the new feed URL to the function. At that point,
the function will configure the NumericStepper and pass the new URL to the

 function. This function will make the request for the new feed.

3. Run the application and click the Most popular button. Figure 13-8 shows what you
should see.

Figure 13-8. Viewing the most popular feeds

After viewing the first page, you should be able to use the NumericStepper control to view the
other pages.

470

CHAPTER 13

Searching Kuler
The final step in completing this application is to enable the search functionality. We’ll use the generic
Kuler search that searches theme titles, tags, author names, theme IDs, author IDs, and hex values for the
provided keyword. Again, because of the way we’ve set up the application, this process is very simple.

1. Start by adding the following event listener to the function:

2. When the user clicks Go!, the application will call the function. Add this func-
tion now.

The function tests that the user has entered a value in the control by comparing
the of the property with . If a value has been entered, the function calls the

 function, passing a new URL that includes the search term. It also passes the text
 with the search text, so that users can see their search criteria.

If a search term has not been entered, the user will see the text Enter a search term in the
 control.

3. The final change is to modify the function to clear the text from the search box.
Change the function as shown in bold here:

4. The application is complete. Run it, enter a search term, and click Go!. You should see the first
page of results display. If your search returned more than one page, you should be able to
display the other pages using the NumericStepper. Figure 13-9 shows a sample search for the
term sand.

If you want to use this application on your web site, you’ll probably want
to remove the TextArea control first.

471

FLEX CASE STUDY

Figure 13-9. The completed application

Reviewing the completed code
You can find the completed code files saved with the chapter resources as ,

, and . I’ve also included the completed files here, so you can check
your code. Don’t forget that you’ll need to edit the custom class file to add your own
developer key. Replace the text with your own API key value.

KulerLoader.as
The first file I’ll show is .

472

CHAPTER 13

473

FLEX CASE STUDY

474

CHAPTER 13

ColorSwatch.mxml
The custom component follows:

475

FLEX CASE STUDY

KulerCompleted.mxml
Finally, you can see the completed code for the application file, .

476

CHAPTER 13

477

FLEX CASE STUDY

478

CHAPTER 13

Summary
Well, that’s it for the chapter and for the book. In this chapter, we worked through a Flex case study
that processed the Kuler feeds from Adobe. The application allowed you to view the highest rated
themes and the most popular themes, and to search themes using a keyword.

When the feed loaded, each of the individual themes displayed in a DataGrid component. We created
a custom component to show the five color swatches for each theme. The application also allowed
users to view other pages of themes.

I hope that you enjoyed this case study and that it helped you to understand the role of namespaces
in XML. Good luck with your XML endeavors in Flash and Flex!

481

INDEX

Special Characters
symbols, 49
% (percent sign), 283
& (ampersand character), 17, 283–284
&& (AND) operator, 111, 115–116
* (wildcard operator), 106–107, 116
.. (descendants operator), 98, 109–110, 115
@ (attribute operator), 98, 108
|| (OR) operator, 111, 115–116
+ (Add binding) button, 395, 397
+ (additive operator), 111, 116–117
+ (plus) character, 283
+= (compound assignment operator), 118–119
< (less-than sign), 13
< > (angle brackets), 14, 18
<? ?> characters, 10
<![CDATA]> characters, 18
= (equal sign), 283
= (simple assignment operator), 118
!= comparison operator, 111
== comparison operator, 111
> (greater-than sign), 13
: (colon), 14, 283
. (dot operator), 98, 101–107
? (question mark), 15, 283
" " (double quotes), 22
' ' (single quotes), 22

A
aa prefix, 244–245
Access 2007, 59–61
ActionScript 2.0

versus 3.0, 66–67
data components, 204–205

ActionScript 3.0
versus 2.0, 66–67
consuming web services

error handling, 351–352
overview, 348
replies, accessing, 350–351, 399
requests, creating, 348–349
requests, making, 349–350
responses, receiving, 350
returned data types, 351
scripted example, 352–362
specifying operations, 349

element and attribute values, changing, 235–237
element names, changing, 245–247
examples

Flash, 234, 248–260
Flex, 234–235, 260–276
overview, 234–247

Namespace class, 69, 89–91
namespaces, 243–245
overview, 65, 233
QName class, 69, 91–93
XML and, 8, 67–68
XML class

content, finding information, 80–82
content, locating, 73–79
content, modifying, 82
limitations of, 93–94
methods of, 73
overview, 68–70
properties of, 70

XML content, modifying with
appendChild() method, 238–239
child node, inserting, 240
deleting elements, 242–243
editing, 241–242
node, copying, 239–240
overview, 237
prependChild() method, 239
setChildren() method, 242

XMLList class, 69, 83–84
XMLListCollection class, 69, 84–89

Add binding (+) button, 395, 397
addBook() method, 268
addClickHandler() function, 253, 268
addconversionRateEventListener() method, 369–370
addEventListener() method, 180, 214, 350, 379
addItem() method, 254, 378, 423
addItemAt(item, index) method, 89
addItem(item) method, 89
additive operator (+), 111, 116–117
addNamespace() method, 243–244
address field, 36–38, 40–41, 43–45, 48–49, 57–59
<address> element, 38, 49, 90, 117
addressBook value, 55
addressBook_completed.fla file, 231
addressConnection database connection, 49
addresses connection string, 45
addressesExported.xml file, 59
addressesWithDocumentMap.xls file, 58

INDEX

482

addressesWithDocumentMap.xlsx file, 59
addresses.xlsx file, 56
addresses.xml file, 57
addressSchema.xml file, 37, 40–41
addressSchema.xsd file, 37–38, 57
addressStylesheet.xml file, 40
address.xml file, 36–37, 40–41, 43, 57, 68
addRow_btn button, 253
adjuncts, SOAP, 330
Adobe Kuler

completed code, reviewing, 471–477
custom class file, 449–453
feeds, 441–443
interface, 447–448
keys, applying for, 441
most popular schemes, displaying, 468–469
overview, 439–440, 446–447
paging functionality, adding, 465–468
responses, receiving, 444–446
searching, 470
setting up, 448–449
themes

displaying, 458–464
highest rated, 453–458

allAuthors() method, 130–131, 133
<allAuthors> element, 99–100, 122–125, 217, 238
allElementsCollection wrapper class, 148
<allow-access-from> tag, 166
Ambrose parameter, 180
amount_txt control, 358–359, 379
ampersand character (&), 17, 283–284
AND (&&) operator, 111, 115–116
angle brackets (< >), 14, 18
API_KEY constant, 450
API_KEY_HERE value, 420
appendChild() method, 237–239, 254–255, 268
appendChild(child) method, 83, 237
applyUpdates method, 225
args object, 375
arguments property, 346–347, 349–350
Array element, 216–217, 224
array type, 177
ArrayCollection object, 458, 460
as statement, 257
as3webservice extension, 388–393
assets folder, 68, 75, 234, 243, 448
attribute() method, 76–77
attribute operator (@), 98, 108
attribute(attributeName) method, 74
attributes

changing values, 235–237
looping through, 108–109
naming, 16
overview, 15
quotes for, 22–23
structuring as elements, 16
writing, 15–16

attributes() method, 74–77
author element, 210, 217

author_list component, 218, 221
<author> child element, 102
<author> element, 76–81, 102–104, 108–109, 124–125,

130–131
authorBookEditor_completed.fla file, 260
AuthorBookEditor_completed.mxml file, 273
authorDetails.xml document, 99–100
authorExample.fla file, 120, 127
AuthorExample.mxml file, 127, 133
authorFirstName property, 99, 102–104, 106–107, 112–117,

124, 126, 131–132, 145, 190
<authorFirstName> element, 112–113, 132, 216, 219,

235–236, 242
authorID attribute, 76, 108–109, 219–220, 236
authorIndex parameter, 251, 268
authorLastName property, 99, 102–104, 106–107, 112,

114–117, 124, 126, 131–132, 145, 190
<authorLastName> element, 77, 81, 182, 184, 216, 219,

235, 242
authorList object, 130, 144–145
authorMoreDetails.xml file, 120, 122, 127–128
authors_cbo control, 249
authors_xc component, 218
<authors> element, 145–146, 261
authorsAndBooksFlex.xml file, 146
authorsAndBooks.mxml file, 153
authorsAndBooks.xml file, 143–144, 183, 210, 214, 219, 247
authorsNS.xml file, 243, 245
authorsShort.xml file, 92
authors.xml document, 74
authors.xml file, 75, 234
authorsXML object, 74–86, 92–93, 100–117, 121–123,

125–126, 128–129, 131–132, 144–145, 241–245
authorsXML.author path, 84
authorsXMLLC variable, 189

B
B. Feeds link, 441
backgroundColor property, 463
BaseCurrencyConverter.as file, 366
Behaviors panel, 213, 397
[Bindable] metatag, 182, 348
binding

DataSet component, creating with, 224–226
XML data directly to UI components

adding binding, 216–217
configuring binding, 217–223
overview, 215–216

Bindings tab, 393, 395
<book> child elements, 114
<book> element, 77–79, 108–110, 113–117, 255–257
bookCost property, 254
<bookCost> element, 99, 102–107, 109–110, 112–117
bookDP object, 251
bookElements property, 265
bookID attribute, 87, 253–254, 266
bookIndex property, 256
bookName property, 254

INDEX

483

<bookName> element, 77–81, 102–104, 106–107, 109–110,
112–116, 125–126

bookPublishYear property, 254
<bookPublishYear> element, 78
books_dg control, 267
books_list component, 221
<books> element, 78, 80, 244
booksList XML object, 251
booMatch variable, 87
Bound To dialog box, 395
bound to setting, 217
bytesLoaded property, 136–137, 145
bytesTotal property, 136–137, 145

C
callCC() method, 357
callWS() method, 358
cancel() method, 174, 347
canLoadWSDL() method, 345
Cascading Style Sheets (CSS), 4
casting returned content, 105
cboAuthor component, 182
ccPOSTstart.fla file, 384
ccStarterComponent.fla file, 401
CDATA (character data), 18
<cfelse> tag, 292
<cfif> tag, 292
<cfloop> tag, 49
<cfoutput> element, 49–50, 292
<cfprocessingdirective> tag, 49, 292
<cfquery> tag, 49
<cfset> tag, 292
<cfxml> tag, 49, 292
changeHandler() function, 124–126, 250–251, 265
changingValues.fla file, 237
ChangingValues.mxml file, 237
<channel> element, 446
channelSet property, 171
character data (CDATA), 18
Chemical Markup Language (CML), 2
child() method, 77, 102, 149, 261
child elements, 14, 19, 77
child nodes, 14, 19, 240
childElements object, 148, 186–187
childElementsCollection object, 149
childElementsLC wrapper class, 186
childIndex() method, 80
childNodes property, 215
child(propertyName) method, 74
children() method, 69, 74, 77, 79, 81
clearResult() method, 347
click attribute, 335
click event, 162, 340
clickHandler() function, 86–88, 162, 197–198, 294, 305,

322–323, 370, 379–380, 402
close() method, 137–138
closing elements, 21–22
CML (Chemical Markup Language), 2
ColdFusion, 8, 49–50, 291–292

colon (:), 14, 283
ColorSwatch.mxml file, 471, 474
columnIndex property, 257
columns collection, 253
ComboTagExample.mxml file, 184
comments, 17–18
comments() method, 73–74
comparenocase() function, 292
complete event, 138, 144, 149, 263, 285, 294, 299–300, 451
complete event listener, 151
completed code

ColorSwatch.mxml, 474
KulerCompleted.mxml, 475–477
KulerLoader.as, 471–473
overview, 471

completeHandler() function, 142–145, 149–152, 261–265,
295–296, 305–306, 451–453

Component Inspector
overview, 207–209
schemas

creating, 209–211
settings for, 211–212

Component Inspector panel, 203, 394
compound assignment operator (+=), 118–119
com.webservicex package, 365
concurrency property, 171–172, 178, 344–345
config.xml file, 45
<contact> element, 38–39, 48–49, 59, 67, 82, 90, 119–120
contactID element, 230
contactname field, 43, 45–49
content, deleting, 119–120
content type, determining, 81
contentType property, 171–172, 174, 176, 283, 310
continent variable, 140
conversionRate() method, 366, 370
ConversionRate operation, 331, 337, 376, 391
ConversionRate parameter, 341
conversionRate_lastResult property, 368
ConversionRate_request() method, 366
conversionRate_send() method, 368
<ConversionRateResponse> element, 332
ConversionRateResultEvent argument, 370
ConversionRateSoapOut message, 332
convert() public method, 359
Convert button, 379
convert_btn control, 340
convertedAmount_txt control, 341, 359
copy() method, 83, 237, 239–240
copying nodes, 239–240
<count> element, 411
createElement() method, 48, 291
creationComplete attribute, 234, 263, 453
creationComplete event, 175, 335
creationComplete handler, 356
crossdomain.xml (cross-domain policy) file, 165–166
CSS (Cascading Style Sheets), 4
Currency custom data type, 366
CurrencyConverter class, 356, 358, 365
CurrencyConverter.as file, 365–367, 370
CurrencyRate_request.as file, 366

INDEX

484

currentPageNumber variable, 418
currentPhoto object, 418
currentTarget property, 124
currentXML() method, 130, 132
currXMLString variable, 129–130, 132
custom class file, 449–453

D
data property, 136–137, 140, 142, 154, 159, 218–219, 285,

357
data type setting, 212
dataField property, 253, 266, 461
dataFormat property, 137, 139
DataGrid object, 257, 439
DataGridEvent class, 256, 270
DataHolder component, 205
dataProvider attribute, 131
DataProvider object, 122–123, 125, 144, 248, 251
dataProvider property, 69, 123–125, 182–184, 187–189,

215–217
DataReader class, 45–46
<dataroot> root element, 61
DataSet component, 205, 223–226
datasource attribute, 49
dateTimeStamp variable, 412
dbConn object, 44–45, 47
dbConn.php file, 48
default namespace, 12
default value setting, 212
default xml namespace statement, 90
delete() operator, 242
DELETE method, 139, 177
deleteBook() public method, 269
deleteClickHandler() function, 269
deleting

content, 119–120
elements, 242–243

deltaPacket component, 223
descendants, locating, 77–78
descendants() method, 77–78, 109
descendants operator (..), 98, 109–110, 115
descendants(name) method, 74
description property, 344
<description> element, 446, 457
destination property, 171, 174
direction parameter, 208, 217
disconnect() method, 174, 345
dispatchEvent() method, 300, 451, 455
displayAsPassword property, 192
displaying

documents, 26
large images and titles in Flickr, 423–425
names of elements, 81
popular schemes, 468–469
read-only XML content, 206
string representation, 82
updatable XML data, 207

document prologs, 9–11

document roots, 9, 15
document trees, 9, 11
Document Type Definitions (DTDs), 10–11, 27–29
<documentation> element, 331
documents.accdb database, 59
DomDocument object, 48
dot operator (.), 98, 101–107
double quotes (" "), 22
dp object, 423
Dreamweaver, 41–43
DTDs (Document Type Definitions), 10–11, 27–29

E
E4X (ECMAScript for XML), 8, 66
E4X expressions

deleting content, 119–120
examples

Flash, 100, 120–127
Flex, 100–101, 127–133
overview, 99

filter expressions, 111–117
looping through attributes, 108–109
operators

attribute, 108
descendants, 109–110
dot, 101–107

overview, 97–98
values, assigning, 117–119

e4x type, 177
e4xAssigningValues.fla file, 119
E4xAssigningValues.mxml file, 119
e4xAttributesExamples.fla file, 109
E4xAttributesExamples.mxml file, 109
e4xDeletingValues.fla file, 120
E4xDeletingValues.mxml file, 120
e4xDescendantsExamples.fla file, 110
E4xDescendantsExamples.mxml file, 110
e4xDotNotationExamples.fla file, 107
E4xDotNotationExamples.mxml file, 107
e4xFilterExamples.fla file, 117
E4xFilterExamples.mxml file, 117
ECMA (European Computer Manufacturers Association), 97
ECMAScript for XML (E4X) standard (ECMA-357), 8, 66
editable property, 227
elementIndex property, 271
elements

closing, 21–22
deleting, 242–243
determining number of, 81
displaying name of, 81
locating, 78
naming, 14, 243, 245–247
nesting, 21
opening and closing tags, 22
overview, 13
populating, 14–15
root, 15
structure of, 21

INDEX

485

structuring attributes as, 16
values, changing, 235–237
writing, 13

elements() method, 78
elements(name) method, 74
else block, 358
email filter, 443
<email> element, 119
empty elements, 22
encoder options setting, 212
encoder setting, 212
entities, 17
equal sign (=), 283
equality, 112–113
error handling

HTTPService class, 317–318
<mx:HTTPService> element, 312
URL, 142–143
URLLoader class, 286
web service, 337, 351–352

errorHandler() function, 455
e.target expression, 271
e.target.lastResult expression, 181
e.target.results expression, 403
European Computer Manufacturers Association (ECMA), 97
Event object, 249, 251, 452
events

of HTTPService class, 178
of <mx:HTTPService> tag, 174–175
of Operation class, 348
of URLLoader class, 138
of WebService class, 345–346

Examples project, 36
Excel 2007, creating XML content in

overview, 50–51
using Save As command, 56–57
using schemas, 57–59

expansion pack, 51
extensible, defined, 2
Extensible Hypertext Markup Language (XHTML), 2, 25–27
Extensible Markup Language. See XML
Extensible Stylesheet Language Transformations (XSLT), 5
Extensible Stylesheet Language (XSL), 29
external content, loading, 170
external data, 8

F
failedHandler() function, 391
farm attribute, 410
fault attribute, 312, 337
fault event, 175, 177, 180, 317, 319, 322, 335, 346, 348
fault event handler, 178
FaultEvent argument, 335
FaultEvent type, 178
faultHandler() function, 181, 312, 317, 319, 322, 324, 335,

337, 350, 359
faultString property, 351
FautlEvent class, 353
feedDisplayText argument, 456

feedPath argument, 452
feeds

Adobe Kuler, 440–443
file, 18–29

feedURL variable, 456, 467
field name setting, 212
field variable, 257
file path, structuring, 280–281
filter expressions, 98, 111–117
filterBooks function, 87
filterFunction property, 85–87
filtering XMLListCollection class, 86–87
<firstdate> element, 411
Flash

ActionScript 3.0, 234, 248–260
consuming web services with

overview, 373
URLLoader class, 374–393
WebServiceConnector component, 393–405

E4X expressions, 100, 120–127
Flickr case study, 416

API, 409–413
application interface, 416–436
keys, applying for, 409
overview, 407–408
requests, making, 409
responses, receiving, 413–416

loading methods
AS 2.0 data components, 204–205
binding XML data directly to UI components, 215–223
DataSet component, 223–226
overview, 203–204
XMLConnector component, 206–215

sending variables in, 154–157
URLLoader class in, 143–146
XML class properties in, 71–72
XML in, 7–8

Flash Player security, 164–166
flashvars type, 177
fl.data.DataProvider class, 121
Flex

ActionScript 3.0, 234–235, 260–276
Adobe Kuler case study

completed code, reviewing, 471–477
custom class file, 449–453
displaying most popular schemes, 468–469
displaying themes, 458–464
feeds, 441–443
highest rated themes, 453–458
interface, 447–448
keys, applying for, 441
overview, 439–440, 446–447
paging functionality, adding, 465–468
responses, receiving, 444–446
searching, 470
setting up, 448–449

consuming web services with
<mx:WebService> element, 333–344
WebService class, 344–348

E4X expressions, 100–101, 127–133

INDEX

486

HTTPService class
error handling, 317–318
example, 318–326
overview, 316
responses, receiving, 317
variables, sending, 316

loading methods
accessing loaded content, 181–182
HTTPService class, 178–200
loading external content, 170
<mx:HTTPService> tag, 170–194
overview, 169–170

sending variables in, 158–164
sever communication, 326–327
URLLoader class in, 146–153
XML class properties in, 72–73
XML in, 7–8
XML tag, 68
XMLListCollection class, 84–89

Flex Builder
overview, 362
Web Service Introspection wizard, 363–365
web services

consuming, 366–371
managing, 365–366

FlexEvent class, 100–101, 131, 151, 162, 189, 197, 304, 322,
369, 453

Flickr
API

interesting photos, finding, 412
overview, 409
owner information, finding, 413
recent photos, finding, 411–412
returned people XML document, 410–411
returned photo XML document, 410
searching for photos, 412

application interface
cosmetic changes, making, 427–428
displaying large images and titles, 423–425
overview, 416
owner information, showing, 430–436
paging functionality, adding, 426–427
recent photos list, 419–423
searching, 429–430
setting up, 417–418
viewing interesting photos, 428
working through, 416–417

keys, applying for, 409
overview, 408
requests, making, 409
responses, receiving

overview, 413
page containing photo, finding, 415–416
receiving person information, 414
receiving photo information, 414
URL of photo, finding, 414–415

flickr.interestingness.getList operation, 410, 412
flickr.people.getInfo operation, 410–411, 413
flickr.photos.getRecent operation, 410–411

flickr.photos.search operation, 412
flickrRequestURL variable, 418–419
Flush() method, 289
for each loop, 108, 236, 460
for in loop, 84
for loop, 83
formatter options setting, 212, 217
formatter setting, 212, 217
from_cbo control, 357
FromCurrency parameter, 332, 337, 341, 367, 376, 395

G
Generalized Markup Language (GML), 3
generated classes

scripting, 369–371
using MXML tags with, 366–369

GET method, 139, 157, 177, 180, 282–283, 287, 375–383
getAddresses.aspx file, 44, 46
getAddresses.aspx.vb file, 44
getAddresses.aspx.vb page, 44
getAddresses.cfm page, 49
getAddresses.php file, 47–48
getBooks() method, 265
getChildElements() method, 149, 152, 187, 189, 262, 264
getFullName() function, 124–125, 131, 145, 190, 249, 264
getItemAt() method, 424
getItemAt(index, prefetch) method, 89
getItemIndex(item) method, 89
getKulerFeed() function, 452–453, 466–467
getOperation() method, 345
getPages() method, 465–466
getPhotos() function, 420
getRate() method, 359
getResponse() method, 320, 324
getSwatches() method, 460–461
getXML() method, 262, 453, 455
GML (Generalized Markup Language), 3
grandchild elements, 15, 19
grandparent element, 15
greater-than sign (>), 13

H
hasComplexContent() method, 80–81
hasSimpleContent() method, 80–81
HEAD method, 177
header event, 348
headers property, 171–172, 344
headerText attribute, 266
hex filter, 443
Highest rated button, 464
highest rated themes, 453–458
highestHandler() function, 455
HTML (Hypertext Markup Language)

editors, 34–35
overview, 24
versus XML, 24–25

html namespace, 91

INDEX

487

HTTP (Hypertext Transfer Protocol), 282
HTTPService() method, 174, 178
HTTPService class

events of, 178
example, 184–191
in Flex

error handling, 317–318
example, 318–326
overview, 316
responses, receiving, 317
sending variables, 316

methods of, 178
overview, 178
properties of, 178
requests

creating, 179
making, 179
sending variables with, 180, 194–200
specifying method, 180

responses, receiving, 180–181
specifying return type, 180

HTTPServiceWithVariables() method, 195
HTTPServiceWithVariables class, 197–198
HTTPStatus event, 138–139, 174, 286, 451
HTTPStatusEvent object, 452, 455
httpStatusHandler() function, 452, 458
httpStatusHandler function, 386
Hypertext Markup Language. See HTML
Hypertext Transfer Protocol (HTTP), 282

I
iconfarm attribute, 411
iconserver attribute, 411
ICurrencyConverter.as files, 366
id attribute, 108, 113, 118, 410
ID field, 43, 45, 47–49
ignoreComments property, 70
ignoreProcessingInstructions property, 70
ignoreWhite parameter, 208
ignoreWhitespace property, 70, 346
IIS (Internet Information Server), 43
import statement, 130, 197, 356, 450, 454, 467
indexes, specifying, 104–105
inequality, 114
initApp() function, 100–101, 121–125, 144–145, 188–189,

249–250, 293–294, 303–304, 321–322, 453–455,
469–470

initialize event, 175
insertChildAfter() method, 240
insertChildAfter(child1, child2) method, 83, 237
insertChildBefore() method, 240
insertChildBefore(child1, child2) method, 83, 237
inserting child nodes, 240
Interesting photos button, 417
interestingClickHandler() function, 428
Internet Information Server (IIS), 43
invoke event, 175, 346

ioError event, 138–139, 142, 286, 294, 296, 299–300,
304–305, 451

IOError function, 157, 455
ioErrorHandler() function, 381, 386
isadmin attribute, 411
isfamily attribute, 410
isfriend attribute, 410
ispublic attribute, 410
isset() function, 290
isSimpleContent() method, 83
<item> element, 444–450, 460
itemEditEndHandler() function, 256–257, 270–271
itemEditHandler() method, 257
itemEditorInstance property, 257
itemRenderer property, 257, 464
itemsPerPage parameter, 441–442, 453

K
key parameter, 441–442
keys, applying for

Adobe Kuler, 441
Flickr, 409

kind options setting, 212
kind setting, 212
Kuler. See Adobe Kuler
kuler prefix, 459
KULER_BASE_URL constant, 453
KulerCompleted.mxml file, 471, 475–477
KulerLoader() method, 451
KulerLoader object, 451, 453–454, 466
KulerLoader.as file, 460, 465, 471–473
KulerNS namespace, 450
KulerStarter.mxml file, 448, 453
<kuler:swatch> element, 446
<kuler:swatchHexColor> element, 446, 459
<kuler:themeItem> element, 446, 459
<kuler:themeRating> element, 459
<kuler:themeSwatches> element, 446
<kuler:themeTitle> element, 459
kulerURL variable, 453

L
label property, 218–220, 357
labelFunction property, 123, 144–145, 249, 264
last element, finding, 105
lastname property, 176, 180
lastResult property, 171, 181–184, 335–336, 341, 346,

349–350
length() method, 69, 80–81, 83–84
length property, 85
less-than sign (<), 13
listStyle.xsl file, 40
listType parameter, 441–442
ll prefix, 247
load() method, 137, 139, 144, 159, 286, 295, 300–301, 375,

452–453
load event, 346

INDEX

488

loadAddress_Binding.fla file, 220
loadAuthors_multipleBinding.fla file, 223
loadBooks() function, 251
loaded content

accessing, 181–182
loading, 170

loaded property, 145
loadedXML object, 182
loader object, 249
loadError event, 452
loading methods

Flash
AS 2.0 data components, 204–205
binding XML data directly to UI components, 215–223
DataSet component, 223–226
overview, 203–204
XMLConnector component, 206–215

Flex
accessing loaded content, 181–182
HTTPService class, 178–200
loading external content, 170
<mx:HTTPService> tag, 170–194
overview, 169–170

loading_lbl control, 449, 454, 456, 461, 466, 470
loadWSDL() method, 345, 349, 353
loadXML() method, 151, 159, 261, 263, 301, 305
local element names, changing, 245–246
localName() method, 80–81
login_btn function, 162
login.aspx file, 287, 292–293, 297, 305, 313–314
login.aspx.vb file, 287–288
loginExample.fla file, 157
loginResponse variable, 289, 318
<loginResult> element, 287–301, 314
LoginService class, 320, 322
looping through attributes, 108–109

M
makeObjectsBindable property, 171
markup, defined, 2
message_txt control, 192
<message> element, 156
message.xml file, 157
Messaging framework, 330
method property, 140, 157, 159, 171, 173, 177, 180, 195
methods

of HTTPService class, 178
of <mx:HTTPService> tag, 174
of Operation class, 347
of URLLoader class, 137–138
of WebService class, 345
of XML class, 73

modifyingStructure.fla file, 243
ModifyingStructure.mxml file, 243
modifyXMLTree() function, 257, 271
MouseEvent argument, 254, 268–269
multiplePartsFormat property, 346–347
multipleSimultaneousAllowed setting, 394

<mx:Application> element, 75, 161, 175, 197, 234, 263, 303,
335, 340, 453

<mx:Canvas> controls, 463
<mx:ComboBox> control, 339
<mx:DataGrid> element, 266, 461
<mx:DataGridColumn> element, 266, 464
<mx:dataProvider> element, 339
<mx:HBox> element, 464
<mx:HTTPService> element

error handling, 312
events of, 174–175
example, 182–184, 312–316
methods of, 174
overview, 170
properties of, 171–173
requests

creating, 175
making, 175–176
sending variables with, 176–177, 191–194
specifying method, 177

responses, receiving, 177–178, 311
sending variables with, 309–311
specifying return type, 177

<mx:itemRenderer> element, 461
MXML

in Flex, 8
using tags with generated classes, 366–369

<mx:NumberValidator> element, 340, 357
<mx:Object> element, 339
<mx:operation> element, 334
<mx:request> element, 176, 193, 310, 313
mx.rpc.http package, 170
mx.rpc.soap package, 346
mx.rpc.soap.mxml package, 344
<mx:Script> element, 87, 151, 162, 189, 197, 269, 322, 336,

356, 454–456
<mx:Spacer> element, 464
<mx:TextArea> element, 86–87
<mx:WebService> element

error handling, 337
overview, 333
replies, accessing, 335–336
requests, making, 334–335
responses, receiving, 335
resultFormat, 336
specifying operations, 334
tag-based example, 337–344
web service requests, creating, 333–334

<mx:XML> element, 68, 127, 234
<myAuthor> element, 246
myfile.xml file, 179
MyHTTPServiceHelper object, 185, 188–189
myHTTPServiceVars object, 197
myKulerXML object, 454–456
myService web service, 368
myXML object, 245
myXMLExplorer variable, 131–133
myXMLListCollection object, 86–88
myXMLLoader object, 151–152, 263–264, 270–271

INDEX

489

MyXMLLoaderHelper class, 151, 263
MyXMLLoaderHelper.as file, 153, 267, 272
myXMLLoaderVars object, 162
myXMLService object, 189

N
name() method, 81, 116
name property, 49, 346
<name> element, 38, 49, 90
name(prefix) method, 80
namespace() method, 80
Namespace class, 66, 69, 89–94, 243, 450, 459
namespaces, 11, 243–247
naming

attributes, 16
elements, 14, 243, 245–247

nesting
elements, 21
tags, 2

newAuthor object, 238
newBookCost variable, 254
newBookName variable, 254
newBookXML object, 254, 268
newPublishYear variable, 254
<news> element, 51–56
<newsContent> element, 54–56
<newsDate> element, 54–55
news.docx file, 51–52
newsSchema.xsd file, 54
<newsTitle> element, 54–56
newsWord.xml file, 56
news.xml file, 51–53
newsXMLOutput.docx document, 54
newsXMLOutput.xml file, 56
newXMLString variable, 257
<nobooks> element, 241
nodeKind() method, 80–81
nodes

copying, 239–240
determining type of, 81
kinds of, 70
overview, 8, 13

nonbreaking space, 17
nsChangeHandler() function, 467
NumberValidator class, 340, 357
NumericStepper control, 417, 427, 447–448

O
objDataReader object, 45–46
object type, 177
open event, 138, 141
openHandler function, 141
Operation() method, 347
Operation class, 344, 346–348, 388
OperationEvent class, 388
operations, 330
OPTIONS method, 177
OR (||) operator, 111, 115–116

Output panel, 105
output_txt control, 145
owner attribute, 410
owner information

finding, 413
showing, 430–436

ownerRequest variable, 431

P
page variable, 411
Page_Load event, 45
Page_Load subroutine, 288
page_txt control, 449
pageencoding attribute, 49
paging functionality, adding

Adobe Kuler, 465–468
Flickr, 426–427

parameter bindings, 395–397
parameters, adding, 394
Parameters tab, 393
params type, 209
params:XML type, 209
parent() method, 73–74, 78
parent element, 14, 19, 79–80
password property, 162, 193, 198
password_txt control, 192
path setting, 212
percent sign (%), 283
person information, receiving, 414
<person> element, 411, 414
phone field, 38–39, 41, 43, 45, 48–49, 58–59
<phone> element, 38–39, 41, 49, 90, 118–119
phoneBook table, 38, 43, 45–47, 49, 58–59
<phoneBook> element, 38, 48–49, 58–59, 67–68, 71–72,

90, 230
phoneBookXML object, 67, 90, 119
photos, Flickr

interesting, finding, 412
interesting, viewing, 428
page containing, finding, 415–416
receiving information about, 414
recent, finding, 411–412, 419–423
returned XML document, 410
searching for, 412
URL of, finding, 414–415

<photos> element, 411
PHP, 8, 47–48, 290–291
PIs (processing instructions), 10
plus (+) character, 283
popular schemes, displaying, 468–469
popularHandler() function, 469
populateCurrencies() function, 401
populating elements, 14–15
port property, 344
POST method, 139, 155, 159, 177, 180, 282–284, 290, 310,

374–376, 384–388
prependChild() method, 239
prependChild(value) method, 83, 237
prettyIndent property, 70–73

INDEX

490

prettyPrinting property, 70–73
processing instructions (PIs), 10
processingInstructions() method, 73
processingInstructions(name) method, 74
progress event, 138, 141, 144, 174
progress event listener, 141
progressEvent object, 141, 145
progressHandler() function, 141, 144
properties

of HTTPService class, 178
of <mx:HTTPService> tag, 171–173
of Operation class, 346–347
of URLLoader class, 136–137
of WebService class, 344–345
of XML class, 70–73

proxying data, locally, 166
publisher property, 182
<publisher> element, 101–102, 210
<publisherName> element, 241
publishYear element, 210
push() method, 357
PUT method, 139, 177

Q
QName class, 66, 69, 74, 91–94, 243
qNameObject.fla file, 93
qualified names, 16, 91, 246–247
question mark (?), 15, 283
quotes, 22–23

R
rate variable, 353
RDBMSResolver component, 205
read only setting, 212
ready property, 344
recent photos, 411–412
Recent photos button, 417, 424
recent photos list, 419–423
recentClickHandler() function, 419
<recordCount> element, 465
refresh() method, 86–88
Refresh Web Services button, 400
removeAll() method, 84, 89
removeItemAt() method, 84, 256
removeItemAt(index) method, 89
removeNamespace() method, 244
removing namespaces, 244–245
replace() method, 236, 241–242, 257, 271
replace(propertyName, value) method, 83, 237
replies

web service
accessing, 335–336
receiving, 350–351

representational state transfer (REST), 329
request property, 171, 173, 180, 195
request URLLoader object, 141

requests
HTTPService

creating, 175–179
making, 175–179
sending variables with, 176–180, 191–200
specifying method, 177, 180

URL
making, 139–140
sending variables with, 140–141
tracking progress of, 141–142

web service
creating, 333–334, 348–349
making, 334–335, 349–350

requestTimeout property, 171, 173
required property, 340
required setting, 212
Response.OutputStream function, 45–46
responses

Adobe Kuler, 444–446
HTTPService class, 177–181, 317
<HTTPService> element, 311
<mx:WebService> element, 335
URL, 142
URLLoader class, 285
web service, 335, 350

REST (representational state transfer), 329
result attribute, 335
result event, 175, 177, 180, 197, 213, 346, 348
result event handler function, 182, 350
<result> element, 105
ResultEvent class, 178, 181, 189, 197, 335, 353
resultFormat property, 172–173, 177, 181, 183, 336,

346–347, 350
resultHandler() function, 178, 181, 187–189, 195–197,

317–323, 336, 350, 359, 370, 403
results property, 214, 217
results:XML type, 209
return type, specifying, 177–180
returned content, casting, 105
returned data types, 351
returned people XML document, 410–411
returned photo XML document, 410
returning

text, 101–102
XMLList object, 102–103

returnType property, 177
root elements, 9, 15
root node, 15
rootURL parameter, 172, 178–179
rowIndex property, 257
<rss> element, 446

S
Save As command

creating XML document in Word using, 51–53
generating XML document in Excel using, 56–57

saveXML() method, 48, 291
Schema tab, 393, 395

INDEX

491

schemas
creating

by adding fields, 211
from XML documents, 209–210

settings, 211–212
XML documents

in Excel, 57–59
in Word, 56

Search box, 417
search_txt control, 470
searchHandler() function, 470
searching

Adobe Kuler, 442–443, 470
Flickr, 429–430

searchQuery parameter, 442–443
searchType_txt control, 449, 456
searchType_txt TextBox control, 456
secret attribute, 410
secure attribute, 166
security, Flash Player, 164–166
security sandboxes, 164
securityError event, 138–139, 142, 165, 286, 294, 296,

299–300, 304, 451, 455
securityErrorHandler() method, 300
Security.loadPolicyFile method, 165
SELECT statement, 45, 48–49
selectedIndex property, 124, 217–218, 224, 251, 256, 268, 358
send() method, 174–176, 179, 183, 186, 309, 314–319, 334,

341, 347–349, 353
sendChanges_xc component, 230
sendPage variable, 155, 293
sendPage.method property, 157
sendRequest() method, 189, 195, 198, 319, 323
sendVars variable, 155
<s:enumeration> elements, 332
server attribute, 410
serverPath variable, 281, 294, 300, 304
servers

Flex approach, 326–327
HTTPService class

error handling, 317–318
example, 318–326
overview, 316
responses, receiving, 317
sending variables with, 316

<mx:HTTPService> element, 309–316
error handling, 312
example, 312–316
overview, 309
responses, receiving, 311
sending variables with, 309–311

overview, 279–280
sending data to, 280–284
URLLoader class

error handling, 286
example, 286–309
overview, 284
responses, receiving, 285
sending variables with, 284

service property, 344, 346
services-config.xml file, 174
setAttribute() method, 48
setChildren() method, 242
setChildren(value) method, 83, 237
setItemAt(item, index) method, 89
setLocalName() method, 245–247
setName() method, 246–247
setNamespace() method, 245
setupDataGrid() function, 252
SGML (Standard Generalized Markup Language), 3
showBooks() function, 124–125
showBusyCursor property, 172–173, 178, 334, 344, 362
showFeed() function, 456, 466–467
showOwnerDetails() function, 431–432
showSwatches() function, 461
simple assignment operator (=), 118
Simple Object Access Protocol, SOAP web services
single quotes (' '), 22
sj prefix, 244
SOAP (Simple Object Access Protocol) web services

consuming with as3webservice extension
example, 389–393
overview, 388

consuming with WebServiceConnector component
arguments, determining, 395
example, 401–405
overview, 393
parameter bindings, adding, 395–397
parameters, adding, 394
results, accessing, 399
results, binding, 397–398
web services call, triggering, 397
Web Services panel, 399–400

overview, 330
Sort class, 85, 88
sort property, 85–86
SortField class, 88
source property, 68–70, 75, 77, 85–86, 89, 94, 234
specifying indexes, 104–105
src folder, 187, 234, 306
<srv:ConversionRate_request_var> element, 367
<srv:ConversionRate_request> element, 367
Standard Generalized Markup Language (SGML), 3
startFeed() function, 456, 466, 469–470
startIndex argument, 441–442, 453, 467
stat attribute, 413
status argument, 452, 455
stop() action, 121–122, 249
storage type setting, 212
strcasecmp() function, 291
String() constructor method, 359
String argument, 102, 246, 271
string data, 54
string element, 38
string representation, displaying, 82
String variable, 84, 271, 456
strPassword variable, 288–290
strResponse variable, 289, 291

INDEX

492

strSQL table, 45–46
strSuppliedPassword variable, 288, 290, 292
strSuppliedUsername variable, 288, 290, 292
structuring file path, 280–281
strUsername variable, 288–290
Stylus Studio 2008 XML, 35–41
suppressInvalidCall parameter, 208
suppressInvalidCall setting, 394
suppresswhitespace attribute, 49
swatchElements XMLList object, 450
swatchElementsCollection object, 450, 460
SWF applications, 7–8, 61, 279–281, 283–294, 297, 305, 310

T
<table> element, 2, 11–25, 90–91
tag filter, 443
tags

opening and closing, 22
overview, 2

target property, 181, 257
target.data property, 249
tblAuthors object, 60
tblAuthorsExported.xml resource file, 60
text

locating, 79
overview, 16–17
returning, 101–102

text() method, 74, 79, 296
text editors, 34–35
text property, 183, 193, 216, 359, 368, 370, 470
text type, 177
themeID filter, 443
TileList control, 417
timeSpan parameter, 441
timeStamp variable, 140
title attribute, 410
title filter, 443
<title> element, 446
to_cbo controls, 357
ToCurrency attribute, 332, 337, 341, 367, 376
toString() method, 70, 80, 101, 114, 156, 292, 301, 324,

335–337, 368
toXMLString() method, 70–73, 80, 82, 86–88, 100–102, 122,

129, 245, 455
trace() statement, 75, 91, 100–102, 117–118, 149, 214,

234–235, 286, 318
TRACE method, 177
trigger() method, 213, 402
Trigger Data Source option, 397
try/catch block, 148, 301

U
UFT-8 encoding, 48, 291
UI components, binding XML data directly to, 215–223
updateResults packet, 225
URI (Uniform Resource Identifier), 11

URL, of photos, 414–415
URL parameter, 208
url property, 172, 175
URLLoader() method, 137
URLLoader class

consuming web services with
as3webservice extension, 388–393
GET request, 375–383
overview, 374–375
POST method, 384–388
WSDL file, 375

error handling, 142–143, 286
events of, 138
examples

ColdFusion page, 291–292
Flash, 143–146, 292–298
Flex, 146–153, 298–309
overview, 143, 286–287
PHP page, 290–291
VB .NET page, 287–290

Flash Player security, 164–166
limits of, 139
methods of, 137–138
objects, creating, 139
overview, 135–136, 284
properties of, 136–137
requests

making, 139–140
sending variables with, 140–141, 284
tracking progress of, 141–142

responses, receiving, 142, 285
updating content with

Flash, 154–157
Flex, 158–164
overview, 154

URLLoaderDataFormat.BINARY value, 137
URLLoaderDataFormat.TEXT method, 137, 139
URLLoaderDataFormat.VARIABLES value, 137
URLRequest object, 136–137, 139, 159, 249, 293, 295, 301
URLRequestMethod object, 386
URLVariables object, 136, 140–141, 154, 162, 284, 293, 295,

305, 374, 386
Use constant value check box, 396
useProxy property, 172, 177
userID filter, 443
username property, 162, 193, 198
username_txt control, 192
<username> element, 310
UTF8 encoding, 46, 292

V
validation, 28, 34
validation options setting, 212
ValidationResultEvent class, 356–357
values, assigning, 117–119
variable attribute, 45–46, 48–50

INDEX

493

variables, sending
choosing format, 283–284
choosing method, 282
in Flash, 154–157
in Flex, 158–164
with HTTPService class, 316
with HTTPService requests, 176–180, 191–200
with <mx:HTTPService> element, 309–311
overview, 281
with URL requests, 140–141
with URLLoader class, 284

vars argument, 195
VB .NET page, 44–47, 287–290
VB .NET (Visual Basic .NET), 8
View at flickr button, 417, 428
viewClickHandler() function, 425
Visual Basic .NET (VB .NET), 8
vocabulary, defined, 2

W
W3C (World Wide Web Consortium), 1
Web Service Introspection wizard, 363–365
web services

consuming
with ActionScript, 348–362
with Flash, 373–405
with Flex, 333–348

Flex Builder, 362–371
overview, 329–330
SOAP, 330
using to generate XML content, 43–44
WSDL, 331–333

web services call, triggering, 397
Web Services Definition Language (WSDL), 330–333, 373,

375
Web Services panel, 399–400
WebService() method, 345
WebService class

events of, 345–346
methods of, 345
Operation class, 346–348
overview, 344
properties of, 344–345

WebServiceConnector component, 205, 393–405
webServiceGET() function, 380
webServiceSOAP() function, 390
well-formed, defined, 7
whitespace, 11, 292
width attribute, 253, 266
wildcard operator (*), 106–107, 116
Word 2007, creating XML content

overview, 50–51
using Save As command, 51–53
using schemas, 53–56

World Wide Web Consortium (W3C), 1
WriteAttributeString() method, 46
WriteCData() methods, 46
WriteEndElement() method, 45–46, 289
WriteStartDocument() method, 46, 289

WriteStartElement() method, 46, 289
WriteValue() method, 289
writing

attributes, 15–16
elements, 13

WSDL (Web Services Definition Language), 330–333, 373,
375

wsdl property, 333, 344–345, 349, 353
wsFaultHandler() method, 353
wsResultHandler() method, 353

X
XHTML (Extensible Hypertext Markup Language), 2, 25–27
XML (Extensible Markup Language)

as ActionScript data type, 67–68
content

creating in Excel 2007, 50–51, 56–59
creating in Word 2007, 51–56
creating with Access 2007, 59–61
finding information about, 80–82
generating from database, 43–50
locating, 73–79
modifying, 82
overview, 33–34
in SWF applications, 61
using HTML editors, 34–35
using text editors, 34–35
using XML editors, 35–43

data
binding directly to UI components, 215–223
displaying read-only, 206
displaying updatable, 207

declarations, 9–10
development of, 3–4
documents

creating schemas from, 209–210
sections of, 9–12
simple, 18–20
storing information in, 2–3
structuring, 12–18
testing for loaded, 214
well-formed, 20–23

example of, 4–5
versus HTML, 24–25
importance of in Flash and Flex, 7–8
overview, 1–2
reasons to use, 5–7
schemas, 27–29
understanding, 2

XML() method, 80, 123, 142, 145, 156, 159, 285, 295, 300
XML class

content
finding information about, 80–82
locating, 73–79
modifying, 82

limitations of, 93–94
methods of, 73, 146
overview, 68–70
properties of, 70–73

INDEX

494

XML editors, 35–43
.xml extension, 33, 46
xml property, 173
XML Schema Definition (XSD) file, 28
xml type, 177
xmlAllContent variable, 148, 186, 262, 450–451, 453
XMLConnector component

Component Inspector, 208–212
displaying

read-only XML content, 206
updatable XML data, 207

example, 214–215
overview, 206–207
testing for loaded XML documents, 214
triggering, 213

XMLContent object, 129–130
xmlDecode property, 172
xmlEncode property, 172
XMLExplorer object, 131
XMLExplorer.as file, 133
XMLList class, 69, 83–84, 102–103
XMLListCollection class, 66, 69, 84–89, 94, 122, 127,

129–130, 148–151, 186–189, 263
xmlListener listener, 215
xmlListObjectLoops.fla file, 84
xmlListObjectLoops.mxml file, 84
XMLLoader() method, 300
xmlLoader object, 148, 158, 304, 450
XMLLoaderWithVariables() method, 158

XMLLoaderWithVariables class, 162
xmlMessage variable, 158–159, 195
xmlObjectLocatingContent.fla file, 79
xmlObjectLocatingContent.mxml file, 79
xmlRequest variable, 158, 418
xmlResponse object, 295–296, 300
xmlResults variable, 418
xmlResults.photos.@pages expression, 426
xmlResults.photos.photo expression, 422
xmlRoot object, 261–262
xmlRootString variable, 261
xmlService object, 183, 186, 195
xmlService.lastResult expression, 184, 195
xmlService.lastResult.author.authorLastName expression,

184
XMLSocket class, 94, 136, 170, 204
xmlStream.aspx page, 141
XmlTextWriter object, 45–46, 289
xmlUpdated event, 267–268, 271
xmlUpdatedHandler() function, 267–268
xmlUtilities folder, 187, 449
xmlUtilities package, 185, 449
XSD (XML Schema Definition) file, 28
XSL (Extensible Stylesheet Language), 29
XSLT (Extensible Stylesheet Language Transformations), 5
<xupdate:append> node, 226
xupdatePacket component, 223, 225
<xupdate:remove> node, 226
XUpdateResolver component, 205, 207

